
Things I Learned in 3012 Applied Combinatorics
or Why Didn’t Shane Just Give Me This Sheet?

I. Sets and Functions

1. A set is an unordered collection of other sets, called the elements or members. For any two sets X,Y either X is
an element of Y , X ∈ Y , or not X 6∈ Y . Two sets are equal if they have the same elements.

2. Subset: X ⊂ Y if every element of X is an element of Y

3. Disjoint: X and Y are disjoint if they have no element in common

4. Set construction (naive):

i. The empty set ∅ has no elements

ii. Metaset: for set X there is a (differnt) set {X} with X as an element

iii. Union: X ∪ Y is the set of elements in X or in Y

iv. Intersection X ∩ Y is the set of elements in X and in Y

v. Ordered pair: (x, y) is the set {{x}, {x, y}}
vi. Cartesian product: X × Y is the set of ordered pairs (x, y) for all x ∈ X and y ∈ Y

vii. Subset specifier: {x ∈ X | p(x)} is the subset of X satisfying property p

viii. Power set: 2X is the set of all subsets of X

ix. Natural numbers: Construct non-negative integers Z≥0 inductively by defining the next integer n as the set
containing all the previously defined integers 0 = ∅, 1 = {0}, 2 = {0, 1}, . . . , n = {0, . . . , n− 1}

x. Constructing numbers leads to the following hierachy of number sets:

∅ ⊂ Z≥0 ⊂ Z ⊂ Q ⊂ R ⊂ C ⊂ H ⊂ O

of natural numbers, integers, rationals, reals, complex numbers, quaternions, octonians

5. Relations: A binary relation on set X is R ⊂ X × X. We write xRy for (x, y) ∈ R. Common properties of
important relations:

i. Reflexive: ∀x ∈ X : xRx

ii. Transitive: ∀x, y, z ∈ X : (xRy and yRz) implies xRz

iii. Symmetric: ∀x ∈ X : xRy implies yRx

iv. Antisymmetric: ∀x ∈ X : xRy and yRx implies x = y

v. An equivalence relation ∼= is a reflexive, transitive, symmetric relation on X. Every equivalence relation on
X gives a partition of X into disjoint subsets whose union is X. The disjoint subsets are called the parts of
the partition, or the equivalence classes [x] = {y ∈ X | y ∼= x}. Every partition gives an equivalence relation,
so partitions and equivalence relations of a set biject.

vi. A poset (X,R) is a set X with a partial order R which is a reflexive, transitive, antisymmetric relation on X

6. Functions: A function f : X → Y is a set of order pairs f ⊂ X × Y such that for every x ∈ X there is a unique
y ∈ Y such that (x, y) ∈ f . We write f(x) = y or x 7→ y for (x, y) ∈ f . Common properties of important functions

i. injective or 1-to-1: ∀x, x′ ∈ X : f(x) = f(x′) implies x = x′

ii. surjective or onto: ∀y ∈ Y : there is x ∈ X such that f(x) = y

iii. bijective if both injective and surjective

7. Constructing functions:

i. identity: every set has an identity ‘do nothing’ function idX : X → X with idX(x) = x for all x ∈ X
ii. composition, ‘’‘plug in’: If f : X → Y and g : Y → Z there is a composed function g ◦ f : X → Z defined by

g ◦ f(x) = g(f(x))

iii. inverse: f : X → Y is a bijection if and only if there is an inverse function f−1 : Y → X such that
f(f−1(x)) = f−1(f(x)) = x

iv. The Axiom of Choice: For any set X of nonempty sets there is a choice function f : X →
⋃

x∈X x such that
f(x) ∈ x

8. Cardinality: sets X and Y have the same cardinality or number of elements if there is a bijection f : X → Y .
Write |X| = |Y |, or |X| = n if the integer n bijects to X. Cardinality gives an equivalence relation on any set of
sets. The equivalence classes are the numbers.



9. Permutations: a bijection σ : X → X is called a permutation of X. The set of all permutations is written X!,
since |X!| = |X|!, or called the symmetric group Sym(X). A cyclic permutation is written in cycle notation
(x0, x1, . . . , xk) meaning the function xi 7→ xi+1 for all i ∈ k and xk 7→ x0 and x 7→ x for all other x ∈ X. Every
permutation may be written as a composition of disjoint cycles.

10. Strings: a length n string on alphabet X is a function s : n → X which we represent by writing the values of s
in order s0s1 . . . sn−1

11. Sequences: usually sequence means an infinite string of numbers a : Z≥0 → R written n 7→ an. But sometimes it
just means string.

II. Counting

The Twelvefold Way:

|{f : k → n}|
How many ways to sort k balls into n boxes?
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1. Counting Strategies:

i. Bijection Principle: Sets in bijection are the same size. Biject new problems to old.

ii. Addition Principle: XOR Disjoint events add |A ∪B| = |A|+ |B| if A ∩B = ∅
iii. Subtraction Principle: Overcount and subtract the size of the extra. Inclusion-Exclusion:∣∣∣∣∣X −⋃
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iv. Multiplication Principle: ANDTHEN Independent events multiply |A×B| = |A||B|
v. Division Principle: Overcount and divide out symmetry. See also: Burnside’s Lemma.

2. There are |X|! permutations of a set X.

3. Binomial coefficients: There are
(
n
k

)
size k subsets of a size n set(
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)
=
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4. The Binomial Theorem: For numbers or variables x, y:
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n∑
k=0

(
n

k

)
xkyn−k

5. The Multinomial Theorem: For numbers or variables x0, . . . , xk and integer powers n:

(x0 + . . .+ xk)n =
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6. There are 2n subsets of a size n set.
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7. Pascal’s Relation:
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allows recursive computation of Pascal’s Triangle.



8. A derangement of a set X is a permutation X → X such that for all x ∈ X: f(x) 6= x. There are Dn derangements
of an n sized set

Dn =!n = round
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9. Stirling numbers of the 2nd kind: There are
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10. Bell numbers: There are Bn partitions bijecting to Bn equivalence relations of a size n set

Bn =
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11. Generating Functions:

1. The generating function f of a sequence a as the formal power series

f(x) =

∞∑
n=0

anx
n

2. Geometric series:
∞∑
k=0

yk =
1

1− y

3. The × and + Principles apply to generating functions.
If f (respectively g) is the generating function for the number of outcomes of game A (respectively B) resulting
in n points, then f + g is the generating function for ways to play either A xor B and get n points; and fg is
the generating function for the ways to play A and then B and get n points total

4. Differentiating term by term provides many series from the geometric:

x
d

dx
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n

12. Integer partitions:

i. An integer partition of k ∈ Z+ is a non-increasing string of positive integers summing to n. There are p(k)
integer partitions of an integer k. These are computable by the generating function

∑
n≥0

p(k)xk =

∞∏
j=1

1

1− xj

ii. There p≤n(k) integer partitions of k into at most n parts (i.e. non-increasing length n or less strings of
positive integers summing to k)

∞∑
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iii. pn(k) integer partitions of k into exactly n parts (i.e. non-increasing length n strings of positive integers
summing to k)

∞∑
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pn(k)xk =
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x
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p≤n(k) = pn(k + n)

iv. The number of integer partitions of k into odd parts and the number of integer partitions into distinct parts
are equal
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)
III. Induction



1. Well Ordering Principle: Every nonempty subset of natural numbers has a minimal element.

2. Principle of Mathematical Induction: Let P : Z≥0 → {True, False} be a propositional function. If P (0) is True
and for all n we have P (n) implies P (n+ 1), then P (n) is True for all n.

3. A recursive sequence a : Z≥0 → R satisfies a recurrence relation with an given by a formula in terms of earlier
terms of the sequence.

4. Factorial:
n! = n · (n− 1)!

5. Greatest common divisor: for a < b ∈ Z+

gcd(a, b) = gcd(a, b− a)

6. Many recurrence relations can be solved by manipulating generating functions

7. A kth order linear recurrence relation writes an+k as a linear combination of the previous k terms

an =
∑
j∈k

cjan+j .

To compute the solution to a kth order linear recurrence relation:

1. Plug in an = xn to find and factor the characteristic polynomial is

0 = xk −
∑
j∈k

cjx
j =

∏
j∈k

(x− λj)

2. If eigenvalue λ is repeated m times as a root of the characteristic polynomial, the sequences an = λn and
an = nλn and . . . and an = nm−1λn are solutions to the recurrence.

3. All possible solutions to the recurrence relation are given by linear combinations of these k different sequences.

4. Solve for the coefficients of the linear combination using any k known terms of the sequence.

IV. Pigeonhole Principle

1. If there is an injection A ↪→ B then |A| ≤ |B|
2. If k balls are sorted to n boxes then there is a box which has at least

⌈
k
n

⌉
balls (ceiling de)

V. Permutation Groups

1. A permutation group or symmetry group or just group is a nonempty set G of permutations of some set A such
that:

i. G is closed under composition: if g, h ∈ G then h ◦ g ∈ G
ii. G has inverses: if g ∈ G then g−1 ∈ G

2. A group can act on a set of functions X ⊂ {A → B} by precomposition or a set of functions Y ⊂ {B → A} by
postcomposition. More generally, a group action on a set X is a function φ : G → X! such that φ(idG) = idX
and φ(h ◦ g) = φ(h) ◦ φ(g).

3. If f, f ′ are functions A → B and f = f ′ ◦ g for some g ∈ G then we say that they are equivalent modulo G or
f ∼= f ′ mod G

4. Orbit or equivalence class of f is all the functions equivalent to f ′

[f ] = orbG(f) = {f ′ ∈ X | ∃g ∈ G : f ′ ◦ g = f}

5. The set of equivalence classes or the quotient is the set of distinct things after identifying by the symmetry

X mod G = X/G = {[f ] | f ∈ X}

6. Stabalizer of f is all the permutations of G whose action does not change f

stabG(f) = {g ∈ G : f ◦ g = f}

7. Fix set of g is all the functions which g leaves unchanged

fix(g) = {f ∈ X : f ◦ g = f}



8. Burnside’s Lemma: If G acts on X then

|X mod G| = 1

|G|
∑
g∈G
|fix(g)|

9. Polya cycle index: if a permutation σ has aj size j cycles then its cycle index is∏
j

x
aj

j

and the cycle index of the group is the average of its elements’ indices.

VI. Complexity

1. If f, g : Z≥0 → R are functions we say f = O(g) if there are constants n0, c such that for all n ≥ n0 :

|f(n)| ≤ c|g(n)|

2. f = o(g) if

lim
n→∞

f(n)

g(n)
= 0

3. = O is a reflexive transitive relations on any set of functions. Considered as classes of functions

O
(

1

n

)
⊂ O(1) ⊂ O(log n) ⊂ O(nk) ⊂ O

(
2n

k
)

4. Given a computing model and a set of basic operations, the computational complexity of an algorithm is the
maximum number of operations required to perform the algorithm, as a function of the size of the algorithm’s
input. Typically only the complexity asymptotic class O is considered to compare between computing models.

5. A descision problem is a problem that can be phrased as a True or False question of the inputs.

6. P or POLYNOMIAL TIME is the class of all decision problems for which there exists an algorithm with complexity
O(nk) for inputs size n and some constant k.

7. EXP or EXPONENTIAL TIME is the class of all decision problems for which there exists an algorithm with

complexity O(2n
k

) for inputs size n and some constant k.

8. A certificate or witness is a proposed solution to a decision problem.

9. NP or NONDETERMINISTIC POLYNOMIAL TIME is the class of all decision problems for which there exists
an algorithm to certify or check certificates to the problem with complexity O(nk) for a size n certificate and
some constant k.

10. NP-complete A decision problem D is NP-complete if every problem in NP can be reduced to the problem
D by an algorithm of complexity O(nk)

11. P
?
= NP. Certainly P ⊂ NP ⊂ EXP, but perhaps the most important unsolved problem in mathematics is if

you can check a problem’s solution quickly, can you also solve the problem quickly?

VII. Posets

1. A poset (X,R) or partially ordered set is a set X together with a relation R which is reflexive, transitive, and
antisymmetric (see relation)

2. A subposet (X ′, R′) of (X,R) a poset such that X ′ ⊂ X and R′ ⊂ R
3. x covers y if xRy and there is no z such that xRzRy

4. x and y are comparable if xRy or yRx. Otherwise they are incomparable.

5. The Hasse Diagram or the cover graph is the digraph with vertex set X and arcs xy whenever x covers y

6. A chain is a subset of X where all elements are mututally incomparable.

7. An antichain is a subset of X where all no two elements are comparable.

8. The size of the largest chain is called the poset height.

9. The size of the largest antichain is called the poset width.



10. Dilworth’s Theorem: For a poset (X,R) of height h and width w, X can be partitioned into h antichains, but no
fewer, or w chains, but no fewer.

11. A chain partition of poset (X,R) with w chains can be computed by a network flow. Make a network N with
two copies X0 and X1 of X as vertices and a capacity 1 arc xy from x ∈ X0 to y ∈ X1 if xRy and x 6= y. Add
a source vertex s with a capactity 1 arc to every vertex of X0, and add a sink vertex t with a capactity 1 arc to
every vertex of X1. Compute a maximum flow φ on N . Partition X with x and y in the same chain if φ(xy) = 1.

VIII. Graph Theory

1. A graph G = (V,E) is a set of vertices V with a set of edges E ⊂ {e ⊂ V | |e| = 2} of 2 element subsets of V .

2. A subgraph of G is a graph G′ = (V ′, E′) such that V ′ ⊂ V and E′ ⊂ E.

3. A complete graph has all possible edges. Kn has n vertices and
(
n
2

)
edges.

4. If G = (V,E) and G′ = (V ′, E′) are graphs then a graph isomorphism is a function f : V → V ′ such that
{v1, v2} ∈ E ⇔ {f(v1), f(v2)} ∈ E′. If an isomorphism exists then we say G ∼= G′ are isomorphic. “Isomorphic”
is an equivalence relation on sets graphs. Deciding if two graphs are isomorphic is NP

5. The set of isomorphisms from G to itself is a group called the symmetry group or automorphism group of G.

6. A pseudograph also can allow multiple edges between the same vertex pair or loops at a single vertex.

7. A digraph (V,A) or directed graph has directed edges called arcs A ⊂ V × V
8. A weighted graph is a graph with a function w : E → R+ assigning a weight to each edge.

9. Edges are incident if they share a vertex. Vertices are adjacent if they share an edge.

10. If the vertices are ordered v0, . . . , vn−1 the adjacency matrix A is the matrix with Aij giving the weight or number
of edges between vivj

11. The degree of a vertex is the number of incident edges. deg v = |{e ∈ E|v ∈ e}|
12. A walk length n in G is a sequence of vertices w = v0v1 . . . vn such that {vi, vi+1} ∈ E is an edge.

13. Walks with additional properties have special names

i. A trail contains only distinct edges

ii. A circuit is a closed trail (begins and ends with same vertices)

iii. An Eulerian trail/circuit contains every edge exactly once

iv. A path/open walk contains only distinct vertices

v. A cycle is a closed path (contains only distinct vertices except the first and last are equal)

vi. A Hamiltonian cycle/path contains every vertex exactly once

14. A graph is connected if for any two vertices v, v′ ∈ V there is a walk w = v0 . . . vn with v0 = v and vn = v′.

15. Eulerian graph is a graph that contains an Eulerian circuit

i. A pseudograph has an Eulerian circuit if and only if it is connected and every vertex has even degree.

ii. Fleury’s Algorithm: print a Eulerian circuit by: Iteratively tranverse and remove edges whose removal will
not disconnect the graph

iii. Postman Problem: the least weight walk traversing every edge of the graph can be computed by finding the
minimal set of paths pairing odd degree vertices, adding copies of those edges, and applying Fleury to the
resulting Eulerian multigraph. Computable in P.

16. Hamiltonian graph is a graph that contains a Hamiltonian cycle

i. The Hamiltonian graph problem is NP-complete

ii. Dirac’s Theorem: If |V | ≥ 3 and every vertex has degree at least |V |2 then G is Hamiltonian.

iii. Traveling Salesman: NP-complete decision problem. Does a weighted graph have a spanning walk of weight
≤ c?

17. Graph G is bipartite if the vertices can be divided into two disjoint sets A ∪ B = V and A ∩ B = ∅ with every
edge from A to B, i.e. E ⊂ A×B

18. Graph G is a tree if it is connected and contains no cycle. G is a tree if and only if it is connected and |E| = |V |−1.

19. A spanning tree of graph G is a subgraph of G which is a tree and contains every vertex.

20. Prüfer: Trees on vertex set V biject to strings of V with length |V | − 2



21. Kirchoff: If G has adjacency matrix A, then let

L =

deg(v1)
. . .

deg(vn)

−A
the Laplacian matrix. The number of spanning trees of G is the value of any cofactor of L. (Delete a column and
row and then take the determinant.)

22. Kruskal: The least weight spanning tree can be computed by a greedy algorithm: iteratively take the least weight
edge which does not form a cycle. Polynomial.

23. Dijkstra: Graph distance can be computed by: iteratvely bredth-first rebuilding the graph while tracking the
least weight path to each vertex so far. Polynomial.

24. A planar graph is a graph representable by a diagram in the plane with no two edges crossing.

25. (Euler Characteristic of the Sphere) A planar graph divides the plane into R regions/faces and |V |− |E|+R = 2.
Each G is connected with at least 3 vertices, each region has at least three edges so 3R ≤ 2|E| and |E| ≤ 3|V |−6.
Similarly a connected, planar bipartite graph with at least 3 vertices satisfies |E| ≤ 2|V | − 4

26. Two graphs G and G′ are homeomorphic if G is isomorphic to a graph obtained from G′ by adding degree 2
vertices which subdivide edges. “Homeomorphic” is an equivalence relation on sets of graphs.

27. Kuratowski: G is planar if and only if it has no subgraph homeomorphic to K3,3 or K5.

28. Planarity deciding is a P problem, and many otherwise otherwise difficult decision problems are P for the class
of planar graphs.

29. A k-coloring is a function from the vertices f : V → k (“the colors”) such that if v, v′ ∈ V are adjacent then
f(v) 6= f(v′). The minimal k for which G admits a k-coloring is called the chromatic number.

30. For k ≥ 3 deciding if G is k-colorable is NP-complete

31. Four Color Theorem: Every planar graph has chromatic number at most 4.

32. Network Flows:

i. A flow network is an oriented graph G = (V,A, s, t, c) with distinguished vertices s source and t sink/terminus,
and an integer weight function c : A→ Z called the capacity

ii. A flow φ on G is a weight φ : A→ Z such that

1) capacity limit 0 ≤ φ(uv) ≤ c(uv)

2) local conservation if v 6= s, t :
∑

u φ(uv) =
∑

u φ(vu)

3) total value conservation
∑

u φ(su) =
∑

v φ(vt)

iii. A cut is a partition of V = S ∪ T with s ∈ S and t ∈ T . The capacity of the cut is c(S, T ) =
∑

u∈S,v∈T c(uv)

iv. Ford Fulkerson, Max-Flow-Min-Cut: The maximum flow value is equal to the minimum cut capacity.

v. Edmunds-Karp: compute a polynomial time by finding augmenting in the potential graph weighted c− φ
33. A matching of a graph is a set of edges, none of which are incident to each other. A perfect or spanning matching

has an edge incident to every vertex.

34. Bipartite Matching: A maximal sized matching of a bipartite graph (V,E) can be computed with a flow network
N . If the bipartition is V = S ∪T attach a source s with a capacity 1 arc to every vertex in S, orient all edges as
arcs from S to T with capacity 1, attach a sink t with a capacity 1 arc from every vertex in S. If φ is a maximum
flow for N , a maximal matching is {{u, v} ∈ E | φ(uv) = 1}.

35. Menger’s Messengers: The minimum number of edge deletions required to disconnect two vertices v and w in a
graph is equal to the maximum number of edge-disjoint paths between them. A maximal sized set of edge-disjoint
paths can be computed by a network flow with source v, sink v, and all edges replaced by a pair of capacity 1
arcs in both directions.


