
Kwan’s Postman Problem

Shane Scott

Neither Rain, Nor Sleet, Nor Dark Of Night Shall Stay These Couriers
From The Swift Completion Of Their Appointed Rounds.

– James Farley Post Office in New York City

Figure 1: Cliff Clavin of TV’s Cheers

Cliff Clavin, dedicated but deeply lazy postman, must walk every street
in his route while delivering mail and then return home. Cliff might have to
travel some streets multiple times to reach every street. How can Cliff plan
a route that minimizes the walking?

If we interpret the streets as edges of a graph with weights describing dis-
tance, then this is a combinatorial minimization problem. Mei-Ko Kwan in

1

https://www.youtube.com/watch?v=JGraw1mODv4


1962 proposed an algorithm to solve the postman problem. A more rigorous
model for the problem is the following:

Problem. Given a connected weighted graph G, how can one compute a
minimal weight closed walk that contains every edge of G?

Jargon. For completeness let’s define all the terms in the problem: A
weighted graph G = (V,E,w) is a set of vertices V (in our problem these
represent street junctions) together with a set E of pairs of vertices called
edges (representing streets) and positive real-valued function on the edges
called the weight w : E → (0,∞). Here the weight of the edge represents the
length of the street. Vertices that share an edge are adjacent. If v is a vertex
then number of adjacent vertices is called the degree of v. A walk of G is a
string of vertices such that vertices adjacent in the string must also be adja-
cent in the graph. More explicitly, a walk length n is a string s : n + 1→ V
such that for all i = 0, . . . , n − 1 we have that {si, si+1} is an edge of the
graph. The walk is closed if it ends where it began: s(n) = s(0). The weight
of the walk is the sum of the weights of its edges: w(s) =

∑n−1
i=0 w({si, si+1}).

Two vertices vertices of a graph are connected if there is a walk between
them. A graph is connected if any two vertices are connected. Recall further
that a multigraph allows multiple edges between the same vertices. An Eu-
lerian circuit is a closed walk that contains every edge of the graph exactly
once. When a graph or multi-graph has an Eulerian circuit, we just say that
the graph is Eulerian.

Let’s return to thinking about the substance of the problem. A really
easy algorithm can solve the problem in some cases. Euler proved the fol-
lowing:

Theorem. A multigraph is Eulerian if and only if it is connected and every
vertex has even degree.

If the graph is Eulerian, then any Eulerian circuit is the postman’s best
route; every Eulerian circuit has weight equal to the total weight of the graph.
There’s an easy algorithm for constructing an Eulerian circuit for an Eule-
rian graph. Iteratively choose edges while being careful not to disconnect the
remaining edges of the graph:

2



Fleury’s Algorithm: to construct an Eulerian circuit from an Eulerian
graph

input Eulerian graph G = (V,E) and starting vertex v ∈ V
initialize H ← ∅ as a list of used up edges and vertices
initialize w ← v as the walk
initialize x as v
while H 6= G do:

if there is any edge {x, y} from x such that G \ (H ∪ {{x, y}}) is con-
nected set e← {x, y}

else e← {x, y} the only edge from x in G \H
append y to w
add e to H
if x has degree 0 in G \H add x to H
update x← y

output Eulerian circuit w

Question: The algorithm above isn’t fully described as we haven’t specified
a subroutine that checks if a graph is connected. Write some psuedocode for
an algorithm that can check if a graph is connected.

Figure 2: An Eulerian
graph

Let’s solve the postman problem for the graph in
Figure 2. Say Cliff will start and end his route at a.
Every vertex has even degree, so we can construct
an Eulerian circuit with exactly the weight of the
full graph. Start at a and always choose the ver-
tex lowest in alphabetical order provided you don’t
disconnect the remaining graph from a. We get the
weight 42 closed walk abcdebfecgfca.

But not all graphs are Eulerian, sometimes Cliff
will have to travel streets multiple times to reach
every street and get back home. Consider the graph
in figure 3. Vertices c and e are both odd degree.
Vertex c has degree 5, so Cliff will arrive at c three
times, leaving only two streets to leave c. Inevitably,
Cliff must repeat an edge that is incident to c. The
same is true of vertex e. To be efficient Cliff should

reuse small weight edges. Use Dijkstra’s algorithm to identify a minimal walk

3



Figure 3: An non-Eulerian graph and its minimal Eulerianized multigraph

from c to e. You’ll find there is a weight 4 walk cbe. That is the path that
Cliff should rewalk. Double those edges of that walk in the graph to obtain
an Eulerian multigraph. Then we can use Fleury’s algorithm to calculate
a route. A minimal weight closed walk containing every edge is given by
the weight 46 walk abcbebfedcgfca. Note that this is the total weight of
the original graph, 42, plus the weight of the minimal walk between the odd
vertices.

In general the graph might have many vertices of odd degree! The pro-
cedure is the same: we will pair off all the odd degree vertices by cloning
edges along walks connecting them to obtain an Eulerian multigraph. We
just need to be sure that we pair off odd degree vertices in a minimal way.
Pairing the vertices off like this is called by graph theorists a minimal perfect
matching.

Algorithm: to compute a minimal weight closed walk containing every edge
of a graph

input weighted graph G = (V,E,w)
identify odd degree vertices W of G
use Dijkstra’s algorithm to compute least weight walks between all odd

vertices W
construct complete graph KW with vertex set W and edges equal to the

minimal walks in G

4



compute a minimal perfect matching of KW

construct multigraph H from G by double edges of the walks in the per-
fect matching

use Fleury’s algorithm to compute w Eulerian circuit of H
output w

Figure 4: More odd de-
gree vertices

Again we’ve left some subroutines unspeci-
fied. But let’s attempt the algorithm with
the graph G in figure 4 anyway. We iden-
tify four odd degree veritces: b, c, e and f .
Now use Dijkstra’s to compute the distance
between every pair of odd vertices. We
can think of this as a complete graph with
the edges weighted by Dijkstra distance in
the original graph, as shown in figure 5.
Now we decide which vertices we should con-
nect with walks in G to make our Eulerian
multigraph. There are three perfect match-
ings:
(be)(cf) weight 3+5=8
(bc)(ef) weight 1+9=10
(bf)(ce) weight 6+4=10

Figure 5: Distance graph of
the odd vertices of G

So we see the minimal perfect match-
ing has b connected to e and c to f .
(Note that (ef) is only weight 1, so it
might seem like a good idea to pair, but
it forces you to pair b and c incurring
a large cost. That’s why a greedy ap-
proach to the postman problem can fail
in general.) We will then double the
edges c, g, g, f , and b, e in G to get the
Eulerian multigraph shown in figure 6.
Now we can write down a minimal closed
walk with every edge of G. The walk
abcdebefcgfgca should do. It has weight
52=44+8.

5



Figure 6: Minimal Eu-
lerianized multigraph

Question: Will Cliff ever have to walk down a
street more than twice? Prove that the mini-
mal Eulerian multigraph obtained from a graph
has at most two edges between any pair of ver-
tices.

The postman problem is in complexity class
P, although that is not at all evident from the algo-
rithm described above. The computational bottle-
neck in our algorithm comes from the pefect match-
ing. In our example we compute the minimal perfect
matching by a brute force comparison– there were
only 3 perfect matchings anyway. How bad could it
be in general? Very.

Question How many ways are there to pair off
n = 2k vertices? Show that there are

(2k)!

k!2k
=

k∏
j=1

2j − 1

If we use Stirling’s approximation to simplify the factorials, we find that

a brute force approach to the matching would require checking O
((

n
e

)n/2)
possibilities. This is completely untenable. Is this as bad a problem as the
traveling salesman? In fact there are efficient known algorithms to compute
minimal perfect matchings. One such algorithm is Edmund’s Blossom Al-
gorithm. This algorithm is very similar to the Edmunds-Karp algorithm of
MinCutMaxFlow. Extremely efficient algorithms are known. See for exam-
ple:

Micali, Silvio; Vazirani, Vijay (1980). An O(V 1/2E) algorithm for finding
maximum matching in general graphs. 21st Annual Symposium on Founda-
tions of Computer Science,. IEEE Computer Society Press, New York. pp.
1727.

6

https://en.wikipedia.org/wiki/Blossom_algorithm
https://en.wikipedia.org/wiki/Blossom_algorithm

