
Solving Linear Recurrence Relations with Linear Algebra:
A 3012 Addendum Shane Scott

This note uses a lot of linear algebra, and assumes you know some of the
terms and how to multiply matrices. You might want to have the following
review sheet handy for recalling some of the jargon as you read:

Ivan Savov’s Very Good, Blisteringly Brief Guide to Linear Algebra

1 Linear Recurrence

Recurrence relations give a great way to count inductively. If you know the first
few numbers in a sequence, the recurrence relation tells you how to compute
the rest of the sequence.

E.g. The famous Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, . . . satisfies the recur-
rence relation fn+2 = fn+1+fn, so that each number is the sum of the previous
two numbers in the sequence.

E.g. If sn is the number of ternary strings length n that don’t contain 102 as
a substring then:

sn+1 = 3sn − sn−2
(Excercise: why?) Then to find all sn we would need to figure out the first
3 terms s0 = 1, s1 = 3, s2 = 9 but then the rest can be computed from the
recurrence relation!

1, 3, 9, 26, 75, 216, 622, . . .

Remark If I want a particular term of a recurrence sequence, say the 100th
Fibonacci number, it’s pretty inefficient to have to compute all the numbers
that come before it. It would be convenient to have a closed form formula for
fn just as a function of the number n, rather than as recursive formula. That
would also tell me more about the sequence, like its asymptotics O, or allow
me to analyze it without necessarily knowing the first few terms.

Question The Fibonacci numbers satisfy the recurrence fn+2 = fn+1 + fn,
but they aren’t the only ones! So do the Lucas numbers:

1, 3, 4, 7, 11, 18, 29, 47, 76, 123, . . .

which have lots of interesting properties like primality testing or approximating
the golden ratio geometric sequence. How do I find all the possible sequences
that satisfy a recurrence, and how can I write them as a closed function of n?

Def In the examples above the recurrence relations were particularly nice!
The next term was always given as a linear combination of previous terms. A
sequence (an)n∈Z≥0

= (a0, a1, a2, . . .) satisfies a linear recurrence sequence of
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degree k if an+k is a linear combination of the previous k terms. That means
there are constants c0, . . . , ck−1 ∈ R such that

an+k = c0an + c1an+1 + . . .+ ck−1an+k−1 =
∑
j∈k

cjan+j

E.g. The Fibonacci sequence is a degree 2 linear recurrence relation, since the
next number depends on the last two

fn+2 = 1 · fn + 1 · fn+1

E.g. The number of ternary strings length n called sn satisfies a degree 3
linear recurrence relation. (Even though we only need 2 previous numbers, we
have to go 3 back.)

sn+3 = 3sn+2 − sn = −1 · sn + 0 · sn+1 + 3 · sn+2

Question If we have a recurrence relation

an+k = c0an + c1an+1 + . . .+ ck−1an+k−1 =
∑
j∈k

cjan+j

how could we find all the sequences that satisfy the recurrence relation? Can we
express the sequences with a closed formula in n, rather than have to compute
the entire sequence?

There’s lots of methods to compute the solution set to a linear recurrence
relation! Here’s one method using your knowledge of linear algebra! If there’s
a linear combination involved a matrix is probably the right tool to handle it!

E.g. A degree 1 sequence is the easiest case.

an+1 = 2an

Notice that inductively you can multiply by 2 and lower the index! so

an = 2an−1 = 22an−2 = . . . = 2na0

But then knowing the starting term a0 tells us the sequence!

E.g. The Fibonacci relation is degree 2. You can take and write two terms
together as a vector. The the recurrence can be rewritten as a 2 by 2 matrix
relation: (

fn
fn+1

)
=

(
fn

fn + fn−1

)
=

(
0 1
1 1

)(
fn−1
fn

)
So if lowering the index is the same as multiplying by the matrix

(
0 1
1 1

)
we

could inductively conclude(
fn
fn+1

)
=

(
0 1
1 1

)n(
f0
f1

)



So if we know the starting numbers f0 and f1 and if we can compute the nth

power of a matrix, we have determined the sequence!

Try Use the recurrence relation for sn to conclude sn
sn+1

sn+2

 =

 0 1 0
0 0 1
−1 0 3

ns0s1
s2


Observation One can transform an degree k linear recurrence relation into a
k by k matrix equation.

an+k = c0an + c1an+1 + . . .+ ck−1an+k−1 =
∑
j∈k

cjan+j

gives a matrix recurrence
an
an+1

...
an+k−1

 =


0
... Ik−1
0
c0 . . . ck−1




an−1
an
...

an+k−2

 = A


an−1
an
...

an+k−2


which has the solution 

an
an+1

...
an+k−1

 = An


a0
a1
...

ak−1


for all n ∈ Z≥0, where A is the matrix with the k − 1-sized identity matrix
Ik−1 in its upper right hand corner and with the recurrence relation coefficients
written (in order!) in its last row

A =


0
... Ik−1
0
c0 . . . ck−1

 .

So a linear recurrence relation can be solved by finding a formula for the powers
of a matrix! This technique can even work for linear systems with several
related recurrence relations! Read Section 2 for a review1 on the Jordan form
how matrix powers can be deduced from their spectrum, or skip to Section 3
to see how to solve linear recurrence.

1maybe, you might have only seen the diagonalizable case before



2 Matrix Spectra and Powers

Computing the powers of a diagonal matrix is just computing the powers of
the entries. Check this formula by multiplying the matrices:1 0 0

0 2 0
0 0 3

2

=

12 0 0
0 22 0
0 0 32

 =

1 0 0
0 4 0
0 0 9


The Spectral Theorem tells us that (after a change of coordinates) any ma-
trix can be made diagonal, or an “almost diagonal” Jordan Cannonical Form.
The eigenvalues are the diagonal entries, and eigenvectors form a nice set of
coordinates. If we know how to diagonalize a matrix, computing the powers is
mostly just computing the powers of the eigenvalues. For any matrix V :(
V

(
2 0
0 3

)
V −1

)2

= V

(
2 0
0 3

)
V −1V

(
2 0
0 3

)
V −1 = V

(
2 0
0 3

)(
2 0
0 3

)
V −1

= V

(
22 0
0 32

)
V −1

E.g. The Fibonacci numbers had matrix equation(
fn
fn+1

)
=

(
0 1
1 1

)n(
f0
f1

)

If we diagonalize

(
0 1
1 1

)
into its spectral form or eigendecomposition, its char-

acteristic polynomial is

det

((
0 1
1 1

)
− λI

)
= det

(
−λ 1
1 1− λ

)
= λ2 − λ− 1

and (use the quadratic formula) its roots are the golden ratio

φ =
1 +
√

5

2
≈ 1.618 . . .

and its Galois conjugate −1/φ = 1−
√
5

2 . We can compute the eigendecomposi-
tion (

0 1
1 1

)
=

(
1 1
φ −1/φ

)(
φ 0
0 −1/φ

)(
1 1
φ −1/φ

)−1
so that we can compute the Fibonacci numbers 2 as(

fn
fn+1

)
=

(
1 1
φ −1/φ

)(
φn 0
0 (−1/φ)n

)(
1 1
φ −1/φ

)−1(
f0
f1

)
.

2or all possible sequences satisfying the Fibonacci relation

https://en.wikipedia.org/wiki/Conjugate_element_(field_theory)


And now since we know f0 = 0 and f1 = 1 we can simplify the first row in the
matrix equation to

fn =
φn − (−1/φ)n√

5
.

The Lucas numbers Ln satisfy the same recurrence, but with the different
initial condition L0 = 2 and L1 = 1 so that they simplify to:

Ln = φn + (−1/φ)n.

2.1 The Spectral Theorem

The Spectral Theorem says any matrix can be diagonalized if all its eigenvalues
are all distinct, or semi-diagonalized into Jordan blocks even if the eigenvalues
repeat. Some linear algebra reminders:

· Eigenvalues λ are roots of the characteristic polynomial

p(λ) = det(A− λI)

· A square size k by k matrix has a degree k characteristic polynomial, which
has k roots (counting with repeats) in C
· The algebraic multiplicity of the eigenvalue λ is the number of times λ is

repeated as a root of the characteristic polynomial.

· Eigenvectors are vectors that a matrix just scales: Av = λv for some eigen-
value λ. You can compute eigenvectors as linearly independent solutions
to

(A− λI)v = 0

· The rank of (A−λI) is the number of linearly independent columns. rank(A−
λI) = number of linearly independent rows = number of pivots in the reduced
row eschelon form = dimension of the range

· The geometric multiplicity of eigenvalue λ is the number of linearly inde-
pendent eigenvectors of A associated to λ. By the rank-nullity theorem, the
geometric multiplicity of λ is n− rank(A− λI)

· Algebraic multiplicity ≥ geometric multiplicity ≥ 1 for every eigenvalue. If
algebraic multiplicity of λ > geometric multiplicity of λ, then λ is a defective
eigenvalue and A is a defective matrix.

· A generalized eigenvector is a vector w such that (A − λI)kw = 0 for some
k. The smallest such k is the rank of the generalized eigenvector w. So
eigenvectors are generalized eigenvectors of rank 1.

Spectral Theorem For every Rn×n matrix A with j eigenvectors there is an
Rn basis of generalized eigenvectors V = [v1| . . . |vn] that block-diagonalize A
into Jordan Canonical form.

A = V ΛV −1

https://www.youtube.com/watch?v=PeUbRXnbmms


where Λ is a block diagonal matrix
Jλ0

0
Jλ1

. . .

0 Jλj


with Jordan blocks have a single eigenvalue λ on the diagonal and ones on the
off diagonal.

Jλ =


λ 1 0 · · · 0
0 λ 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 λ 1
0 · · · 0 0 λ


In particular if A has n distinct eigenvalues, then A has n eigenvectors and
Λ is diagonal.

The columns of such a change of basis matrix V may be computed by forming
Jordan chains

wi
A−λI−→ wi−1

A−λI−→ . . .
A−λI−→ w1

A−λI−→ 0

of generalized vectors by iteratively choosing solutions to (A−λI)wk+1 = wk
for where w0 = 0. The length i of the Jordan chain is the size of the Jordan
block in Λ. The lengths of all Jordan chains for eigenvalue λ sum to the
algebraic multiplicity m. The number of Jordan chains for eigenvalue λ is the
geometric multiplicity of λ.

E.g. The matrix

A =

6 −2 −2
1 2 −1
0 2 4

 =

2 2 1
0 1 0
2 0 0

4 1 0
0 4 1
0 0 4

2 2 1
0 1 0
2 0 0

−1

has eigenvalue 4 with algebraic multiplicity 3 and geometric multiplicity 1, so
it has a size 3 Jordan block corresponding to the Jordan chain1

0
0

 A−4I−→

2
1
0

 A−4I−→

2
0
2

 A−4I−→ 0

Observe Jordan blocks of size k have upper diagonal powers which we can
find using the Binomial Theorem and noticing Jλ = λI + N where N is the
matrix with 1s one entry above the diagonal. Then N j has just 1s in the jth



entry above the diagonal and

Jnλ =

n∑
j=0

(
n

j

)
λn−jN j =



λn
(
n
1

)
λn−1

(
n
2

)
λn−2 · · · · · ·

(
n
k−1
)
λn−k+1

λn
(
n
1

)
λn−1 · · · · · ·

(
n
k−2
)
λn−k+2

. . .
. . .

...
...

. . .
. . .

...
λn

(
n
1

)
λn−1

λn


so that even though defective matrix powers are much trickier to compute,
their powers follow a definite pattern:

The Important Takeaway: Every entry of the matrix power An (as a func-
tion of n) is a linear combination of λn, nλn, . . . , nm−1λn for all eigenvalues
λ of multiplicity m.

Our recurrence case The linear recurrence relation

an+k = c0an + c1an+1 + . . .+ ck−1an+k−1 =
∑
j∈k

cjan+j

gives a matrix recurrence
an
an+1

...
an+k−1

 =


0
... Ik−1
0
c0 . . . ck−1




an−1
an
...

an+k−2


where the matrix has a pretty particular form!

A =


0
... Ik−1
0
c0 . . . ck−1


Observe that this matrix always has the recurrence coefficients written on the
bottom row, and its characteristic polynomial has the same coefficients as the
recurrence coefficients!

det(A− λI) = λk − ck−1λk−1 − . . .− c1λ− c0 = λk −
∑
j∈k

cjλ
j .

Excercise In fact the eigenvectors come in a very predictable form. Check
that for any eigenvalue λ if A is the form above then an eigenvector is given
by 

1
λ
...

λk−1





Putting all this together we can prove the solution set to a linear recurrence.

Theorem. If characteristic polynomial λk−
∑
j∈k cjλ

j of the degree k recur-
rence an+k =

∑
j∈k cjan+j has k distinct roots λ0, . . . , λk−1, then the solution

set of the recurrence is a k-dimensional vector space spanned by the geomet-
ric sequence of each eigenvalue. I.e. for any solution sequence an there are
constants b0, . . . , bk−1 such that

an = b0λ
n
0 + b1λ

n
1 + . . .+ bk−1λ

n
k−1

Proof. If the characteristic polynomial for a degree k recurrence has k distinct
eigenvalues then 

an
an+1

...
an+k−1

 = An


a0
a1
...

ak−1



=


1 . . . 1
λ0 . . . λk−1
...

. . .
...

λk−10 . . . λk−1k−1


λ

n
0

. . .

λnk−1




1 . . . 1
λ0 . . . λk−1
...

. . .
...

λk−10 . . . λk−1k−1


−1

a0
a1
...

ak−1


so then examining the first row we see

an =
(
λn0 λn1 . . . λnk−1

)


1 . . . 1
λ0 . . . λk−1
...

. . .
...

λk−10 . . . λk−1k−1


−1

a0
a1
...

ak−1


= b0λ

n
0 + . . .+ bk−1λ

n
k−1

where the coefficients are given by the equation
1 . . . 1
λ0 . . . λk−1
...

. . .
...

λk−10 . . . λk−1k−1




b0
b1
...

bk−1

 =


a0
a1
...

ak−1



If an eigenvalue λ is repeated m times, an analysis of the Jordan block powers
shows that there are solutions given by λn times a polynomial of degree m−1:

b′0λ
n + b′1nλ

n + . . .+ b′m−1n
m−1λn



3 Computing Solutions to Linear Recursion

The linear algebra in the previous section 2 tells us we can compute all possible
solutions to the recurrence relation

an+k =
∑
j∈k

cjan+j

in the following way:

1) Plug in an = xn to find the characteristic polynomial is

0 = xk −
∑
j∈k

cjx
j =

∏
j∈k

(x− λj)

which has k (possibly repeated) roots λ0, . . . , λk−1 called the eigenvalues.
Compute the eigenvalues by finding the roots of the characteristic polyno-
mial.

2) For every eigenvalue λ, the sequence an = λn satisfies the recurrence.

3) If the eigenvalue λ is repeated m times as a root of the characteristic poly-
nomial, the sequences n 7→ λn and n 7→ nλn and . . . and n 7→ nm−1λn

satisfies the recurrence.

4) All possible solutions to the recurrence relation are given by linear combi-
nations of these k different sequences.

5) Solve for the coefficients of the linear combination using any k known terms
of the sequence.

E.g Since the Fibonacci sequence satisfies the recurrence fn+2 = fn+1 + fn
we have characteristic polynomial x2 = x+1 with roots φ± = 1±

√
5

2 . So there
must be constants b0 and b1 so that

fn = b+

(
1 +
√

5

2

)n
+ b−

(
1−
√

5

2

)n
If we plug in f0 = 0 and f1 = 1 we can solve for b+ and b−.

f0 = 0 = b+ + b−

f1 = 1 = b+

(
1 +
√

5

2

)
+ b−

(
1−
√

5

2

)

so that b± = ± 1√
5
.

An example with repeated roots Consider the solutions to the 5th order
recurrence

an+5 = 15an+4 − 86an+3 + 236an+2 − 312an+1 + 160an



The characteristic polynomial is (hard to factor but)

0 = x5 − 15x4 + 86x3 − 236x2 + 312x− 160 = (x− 2)3(x− 4)(x− 5)

The eigenvalues are 2,2,2,4,5 so the general form of the solution is

an = b02n + b1n2n + b2n
22n + b34n + b45n

for any constants b0, . . . , b4 ∈ C. If we know the first 5 terms a0, . . . , a4 we
would solve for the bi via

1 0 0 1 1
2 2 2 4 5
4 8 32 16 25
8 24 216 64 125
16 64 1024 256 625



b0
b1
b2
b3
b4

 =


a0
a1
a2
a3
a4


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