
Things to Definitely Know

Euler’s Identity
eiθ = cos θ + i sin θ

Pythagorean Identity
cos2 θ + sin2 θ = 1

Trigonometric Identities

cos(u+ v) = cosu cos v − sinu sin v

sin(u+ v) = cosu sin v + sinu cos v

cos2 u =
1

2
(1 + cos 2u)

I First Order Differential Equations

1. Linear Equation y′ + py = g. Multiply by the integrating factor µ = e
∫
p:

y(t) =
1

µ(t)

(∫ t

t0

µ(t)g(t) dt+ c

)
Compare with Variation of Parameters below. Examples: Tank Mixing, Continuously Compounded Interest,
Velocity

2. Separable Equation: y′ = f(x)g(y). Seperate and integrate sides separately:∫
1

g(y)
dy =

∫
f(x) dx+ c

Solve for y when possible.

3. Exact Equation: M(x, y) dx+N(x, y) dy = 0. The equation is an exact differential form if

dψ =
∂ψ

∂x
dx+

∂ψ

∂y
dy = M(x, y) dx+N(x, y) dy = 0

Check exactness by checking that ∂M
∂y = ∂N

∂x . If exact then the solutions are the level sets of a potential function

ψ(x, y) = k.

ψ(x, y) =

∫
M∂x+

∫ (
N − ∂

∂y

∫
M∂x

)
∂y

Examples: Population Dynamics, Black Hole Evaporation, Newton’s Law of Cooling

II Euler’s Method

1 A solution to an initial value problem y(t0) = y0 and y′ = f(y, t) can be estimated numerically by a piecewise
linear function.

2 Euler’s method with step size h estimates a solution iteratively by setting

tn = tn−1 + hyn = yn−1 + hf(yn−1, tn−1)

3 The Mean Value Theorem guarantees there is some unknown time a ∈ (tn, tn+1) such that

y(tn+1) = y(tn) + hy′(tn) +
h2

2
y′′(a)

4 The local truncation error in Euler’s method can be bounded by

|yn − y(tn)| ≤ h2

2
max |y′′|

5 The total local truncation error in Euler’s method from t0 to tn can be estimated as

≈ h

2
(tn − t0) max |y′′|



III Nonlinear Autonomous Systems of Differential Equations:

d

dt

(
x
y

)
=

(
f(x, y)
g(x, y)

)
(1)

where x and y are functions of time t and f and g are functions of x and y only. More generally ẋ = F (x). Often
not solveable analytically.

1 Equilibrium points or critical points or stationary points are points where the derivative F (x) vanishes. In a 2
dimensional system, the equilibrium (x0, y0) satisfies

d

dt

(
x
y

)
|x=x0,y=y0

=

(
f(x0, y0)
g(x0, y0)

)
=

(
0
0

)
2 Almost Linear Systems A nonlinear equation may be approximated by a linear equation near equilibrium point a

(or (x0, y0)) using the Taylor expansion d
dtx ≈ F

′(a)(x− a) for x near a, where F ′ is the Jacobian derivative. For
a 2 dimensional system for (x, y) near (x0, y0)

d

dt

(
x
y

)
≈

(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)
|x=x0,y=y0

(
x− x0

y − y0

)

3 Stability Analysis The Jacobian derivative at the equilibrium point gives stability:

J =

(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)

Equilibrium (x0, y0) is attracting if every eigenvalue of J(x0, y0) is negative, repelling if every eigenvalue is positive,
and a saddle if there are eigenvalues of mixed sign.

4 Solution trajectories are the curves in phase space (or x-y space) traced by solutions to equation (1). Trajectories
are solutions to the (sometimes solveable) differential equation

dy

dx
=
dy/dt

dx/dt
=
f(x, y)

g(x, y)

5 A differential equation or in general any dynamical system is chaotic if it is 1) sensitive to initial conditions, 2) the
time evolution of any two regions eventually overlaps, and 3) every point is arbitrarily close to a periodic orbit.

6 Nonlinear differential equations might have strange chaotic attractors where solutions are chaotic. Strange attrac-
tors may be complicated sets, but nearby solutions will move toward the attractor.

7 Individual numerical solutions to chaotic equations are unreliable, but the locations and shapes of strange attractors
can be estimated numerically.

IV Homogenous Linear Systems:
x′(t) = A(t)x(t) (2)

where A is a n× n matrix valued function and x is a vector valued fucntion.

1 If x(t) and y(t) are solutions to equation (2) then so is any linear combination ax(t) + by(t).

2 Equation (2) has n linearly independent solutions away from the discontinuities of A.

3 Solutions x1, . . . ,xn are linearly independent in interval [a, b] if and only if the Wronskian is non-zero in [a, b]

W (t) = det[x1(t) . . .xn(t)] 6= 0

4 If x1, . . . ,xn are linearly independent solutions then the matrix with x1, . . . ,xn as column vectors is a fundamental
matrix.

χ(t) = [x1(t) . . .xn(t)]

5 Subject to the initial condition x(t0) = x0 with t0 in interval [a, b] with detχ(t) 6= 0 for every t ∈ [a, b] then there
is a unique solution

x(t) = χ(t)χ−1(t0)x0



6 One can transform an nth order linear differential eqation into a linear system:

y(n) = a0(t)y(t) + a1(t)y′ . . .+ an−1(t)y(n−1)

becomes

d

dt


y
y′

...
y(n−1)

 =


0
... In−1

0
a0(t) . . . an−1(t)

 =


0 1 0 . . . 0
0 0 1 . . . 0

. . .
. . .

...
0 . . . 0 1

a0(t) a1(t) . . . an−2(t) an−1(t)


V Autonomous Homogenous Linear Systems:

x′(t) = Ax(t) (3)

where A ∈ Rn×n is a constant matrix and x is a vector valued function.

1 Eigenvalues λ are roots of the characteristic polynomial

p(λ) = det(A− λI)

Eigenvalues are real or come in complex conjugate pairs.

2 The algebraic multiplicity of the eigenvalue is its multiplicity as a root of the characteristic polynomial.

3 Eigenvectors are linearly independent solutions to

(A− λI)v = 0

4 If v is an eigenvector associated to eigenvalue λ then

x(t) = eλtv

is a solution to Equation (3).

5 If v± = u ± iw are a pair of complex eigenvectors correpsponding to conjugate pair of eigenvalues λ± = α ± iβ
then the real part of the span of the solutions eλ+tv+ and eλ−tv− is the span of solutions eα(cosβtu − sinβtw)
and eα(sinβtu + cosβtw)

6 The rank of (A−λI) is the number of linearly independent columns. rank(A−λI) = number of linearly independent
rows = number of pivots in the reduced row eschelon form = dimension of the range

7 The geometric multiplicity of λ is the number of linearly independent eigenvectors of A associated to λ. By the
rank-nullity theorem, the geometric multiplicity of λ is n− rank(A− λI)

8 Algebraic multiplicity ≥ geometric multiplicity ≥ 1. If algebraic multiplicity of λ > geometric multiplicity of λ,
then λ is a defective eigenvalue and A is a defective matrix.

9 A generalized eigenvector is a vector w such that (A− λI)kw = 0 for some k. The smallest such k is the rank of
the generalized eigenvector w.

10 For every n×n matrix A there is a basis of basis of generalized eigenvectors V = [v1| . . . |vn] that block-diagonalize
A into Jordan Canonical form.

A = V JV −1

where J is a block diagonal matrix with Jordan blocks of the form
λ 1 0 · · · 0
0 λ 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 λ 1
0 · · · 0 0 λ


11 The columns of such a change of basis matrix V may be computed by forming Jordan chains

wn
A−λI−→ wn−1

A−λI−→ . . .
A−λI−→ w1

A−λI−→ 0

of generalized vectors by iteratively choosing solutions to (A − λI)wk+1 = wk for k = 0 . . . n where w0 = 0. The
lengths of all Jordan chains for eigenvalue λ sum to the algebraic multiplicity m. The number of Jordan chains for
eigenvalue λ is the geometric multiplicity.



12 If wn
A−λI−→ wn−1

A−λI−→ . . .
A−λI−→ w1

A−λI−→ 0 is a Jordan chain then there is a linearly independent solution to
ẋ = Ax for every generalized eigenvector in the chain given by

eλt
(

wk + twk−1 + . . .+
tk−1

(k − 1)!
w1

)
for each k = 1 . . . n.

13 Equivalently, if λ has algebraic multiplicity m and v1, . . . ,vm span the nullspace of (A−λI)m, then for k = 1, . . . ,m

xk(t) =
tm−1eλt

m− 1!
(A− λI)m−1vk + . . .+ eλtvk

gives m linearly independent solutions to equation (3).

14 If χ(t) is a fundamental matrix then the matrix exponential is the unique fundemental matrix normalized at 0

eAt =

∞∑
n=0

tn

n!
An = χ(t)χ−1(0)

15 The general solution to equation (3) is x(t) = eAtc where c ∈ Rn is a constant vector.

16 A is invertible if and only if it has only non-zero eigenvalues if and only if det A 6= 0.

17 If A is invertible than the dynamical system d
dtx = Ax has exactly one equilibrium point: The origin. The

equilibrium point is stable or attracting if all the eigenvalues of A have negative real part, unstable or repelling if
all the eigenvalues have positive real part, and a saddle of semistable if the eigenvalues have mixed signs. If the
eigenvalues are complex then solutions spiral or oscillate. If the eigenvalues are completely imaginary, then the
equilibrium point is a spiral center.

18 The phase portrait of the dynamical system d
dtx = Ax is a visual discription of solution trajectories in Rn and

enable a graphical analysis of long term solution behavior ( t→∞). Solution trajectories should demonstrate the
eigenlines, the dominant solution behavior, and the direction in which all trajectories are followed. Direction fields
are also a plus.

19 To find the inverse of A
rref [ A | I ] = [ I | A−1 ]

20 If A is invertible then d
dtx = Ax+b can be solved by a change of variables to y = x+A−1b and solving d

dty = Ay.

VI Nonhomogenous Linear Systems:
x′(t) = P(t)x(t) + g(t) (4)

1. Find a fundemental set of solutions x1, . . . ,xn to the homogenous equation x′(t) = P(t)x(t). Let χ = [x1 . . .xn]
be the corresponding fundamental matrix.

2. A particular solution to the nonhomogenous equation is given by

xp(t) = χ

∫
χ−1g(t) dt

3. The general solution to the nonhomogenous equation (4) is then

x(t) = c1x1(t) + . . .+ cnxn(t) + xp(t)

or

x(t) = χc + xp = χ

(∫
χ−1g dt+ c

)
VII Second Order Linear Equations:

y′′ + p(t)y′ + q(t)y = g(t) (5)

1. Given two solutions y1(t) and y2(t) the Wronskian is

W (t) = det

(
y1(t) y2(t)
y′1(t) y′2(t)

)
The Wronskian is nonzero wherever the solutions are linearly indepedent.



2. The general solution to equation (5) is

y(t) = c1y1(t) + c2y2(t) + yp(t)

where y1 and y2 are linearly indepedent solutions to the homogenous equation

y′′ + p(t)y′ + q(t)y = 0

and yp is a particular solution to equation (5).

3. Variation of Parameters: If y1 and y2 are homogenous solutions to equation (5) with Wronskian W then a particular
solution is

yp(t) = −y1(t)

∫
y2(t)g(t)

W (t)
dt+ y2(t)

∫
y1(t)g(t)

W (t)
dt

VIII Constant Coefficient Second Order Linear Equations:

my′′ + by′ + ky = g(t) (6)

1. If m, b, k > 0 the equation can be interpreted as the Newtonian equation of motion for a mass spring system of
mass m, damping constant b, and Hooke constant k under a driving force of g(t).

2. The characteristic polynomial of equation (6) is p(λ) = mλ2 + bλ+ k. Homogenous solutions depend on the roots
of the characteristic polynomial. If λ1, λ2 are the roots of p:

Roots Homogenous Solutions Discriminant Spring Case
λ1 6= λ2 ∈ R eλ1t eλ2t b2 < 4mk Overdamped
λ1 = λ2 ∈ R eλ1t teλ2t b2 = 4mk Critically damped
λ± = α± iω eαt sinωt eαt cosωt b2 > 4mk Underdamped
λ± = ±iω sinωt cosωt b = 0 Undamped

3. Method of Undetermined Coefficients: Determine a particular homogenous solution by plugging the anzatz into
the differential equation and attempting to fix the unknown constants. In general, if the inhomogeneity is of the
form

p(t)eλt

for a polynomial p, then you should guess
tmq(t)eλt

where m is the algebraic multiplicity of λ as an eigenvalue and q is a polynomial with unknown coefficients and
deg q = deg p. Similarly

Inhomogeneity: p(t)eαt sinωt

p(t)eαt cosωt Ansatz: tmeαtq(t) sinωt+ tmeαtq̃(t) cosωt

where m is the algebraic multiplicity of α± ω and q, q̃ are degree deg p polynomials of with unknown coefficients.

IX Laplace Transform: The Laplace Transform is a linear operator which acts on a function by f

L[f ](s) =

∫ ∞
0

e−stf(t) dt

1. Linear: L [af(t) + bg(t)] (s) = aL[f(t)](s) + bL[g(t)](s)

2. Invertible: there is an inverse linear transform L−1 such that

L−1[L [f(t)]] = f(t)

for any piecewise continuous, exponentially dominated function f : [0,∞)→ R.

3. Derivatives transform to multiplication by the frequency:

L
[
d

dt
f(t)

]
(s) = sL [f(t)] (s)− f(0)



4. Exponentials in time transform to shifts in frequency:

L
[
eatf(t)

]
(s) = L [f(t)] (s− a)

5. Multiplication by time transforms to derivatives:

L [tf(t)] (s) = − d

ds
L [f(t)] (s)

6. A piecewise continuous, exponentially dominated function satisfies:

lim
s→∞

L [f(t)] (s) = 0

7. Time dilation gives inverse frequency dilation

L [f(at)] (s) =
1

a
L [f(t)]

( s
a

)
8. To solve a differential equation in independent variable y: Transform an differential equation in time t to an

algebraic equation in terms of the Laplace variable s, then solve for L [y] in terms of s and invert the transform.
Invert by means of a Laplace transform table (learn to use the table on page 328) and the method of partial
fraction decompositions.

9. Write piecewise continuous functions using the unit step or Heaviside function

uc(t) = u(t− c) =

{
1 if t ≥ c
0 if t < c

which satisfies
L [u(t− c)f(t− c)] (s) = e−csL [f(t)] (s)

10. The impulse, point mass, or δ-Dirac function δ(t) may be thought of as the (distributional) derivative of the
Heaviside function. It has the property: ∫ b

a

δ(t− t0)f(t)dt = f(t0)

if t0 ∈ (a, b) and 0 if t0 /∈ [a, b]. L [δ(t)] = 1.

11. A periodic function f with period T satisfies f(t+ T ) = f(t) for any argument value t. If f is periodic then

L [f ] (s) =

∫ T
0
f(t)e−st dt

1− e−sT
=

1

1− e−sT
L [f(t) (1− u(t− T ))] (s)

12. The convolution of a functions f and g is written f ∗ g and defined by

f ∗ g(t) =

∫ t

0

f(t− u)g(u) du

The convolution is commutative f ∗ g = g ∗ f and linear in each argument.

13. Convolutions transform to multiplications L [f ∗ g] (s) = L [f ] (s)L [g] (s)

Laplace Transform L

Time Frequency Time Frequency

f(t) = L−1[F ](t) L[f ](s) = F (s) L−1[F ](t) = f(t) F (s) = L[f ](s)
f + g L[f ] + L[g] cf cL[f ]

f ′ sL[f ]− f(0) f (n)
snF (s) − sn−1f(0) − . . . − f(n−1)(0)

tf(t) − d
dsF (s) tnf(t) (−1)nF (n)(s)

f(t) = f(t+ T )
∫ T
0
f(t)e−stdt

1−e−sT f ∗ g(t) =∫ t
0 f(t − τ)g(τ)dτ L [f ]L [g]

f(at) 1
aF
(
s
a

)
1
af
(
t
a

)
F (as)

1 1
s δ(t− c) e−cs

eλt 1
s−λ eλtf(t) F (s− λ)

tn n!
sn+1 tp for p > −1 Γ(p+1)

sp+1

sinωt ω
s2+ω2 cosωt s

s2+ω2

sinh at 1
s2−a2 cosh at s

s2−a2

u(t− c) e−cs

s u(t− c)f(t− c) e−csL[f(t)](s)

Heaviside unit step function u, Dirac delta δ, gamma function Γ


