This exam contains 12 pages (including this cover page). Only answer 7 of the first 8 free response questions. Cross off the question you do not want graded from the grade table below. If you do not cross off a question the first 7 will be graded. There are 5 multiple choice bonus problems at the end of the exam. Put your name on every page of the exam.

Honor Pledge: I have read and understand the exam instructions. I commit to uphold the ideals of honor and integrity by refusing to betray the trust bestowed upon me as a member of the Georgia Tech community.

Signature: _____

				Grad	<u>le Tabl</u>	<u>e</u>				
Question:	1	2	3	4	5	6	7	8	9	Total
Points:	9	9	9	9	9	9	9	9	0	63
Score:										

Formal Symbols Crib Sheet

$f: A \to B$	function with domain A & codomain B	\mathbb{N}	natural numbers
$f \circ g$	composition of functions	Z	integers
f^{-1}	inverse function	\mathbb{Q}	rational numbers
$\lim_{x \to a}$	limit as x approaches a	\mathbb{R}	real numbers
$\lim_{x \to a^-}$	limit from below	(a,b)	open interval a to b
$\lim_{x \to a^+}$	limit from above	[a,b]	closed interval a to b
\subset	subset of	\in	element of
\cap	intersection	U	union
\mapsto	maps to	f'	derivative
$\frac{d}{dx}$	derivative with respect to x		

-	constant a C in and arsterary roar ranotions j an				
	Function Derivative		Function	Derivative	
	a	0	af	af'	
	f+g	f' + g'	fg	f'g + fg'	
	$\frac{f}{g}$	$\frac{f'g-fg'}{g^2}$	$f \circ g$	$(f'\circ g)g'$	
	f^{-1}	$\frac{1}{f' \circ f^{-1}}$	x^a	ax^{a-1}	
	a^x	$a^x \ln a$	$\log_a x $	$\frac{1}{x \ln a}$	
	$\sin x$	$\cos x$	$\csc x$	$-\csc x \cot x$	
	$\cos x$	$-\sin x$	$\sec x$	$\sec x \tan x$	
	$\tan x$	$\sec^2 x$	$\cot x$	$-\csc^2 x$	
	$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$	arccscx	$\frac{-1}{ x \sqrt{x^2-1}}$	
	$\arccos x$	$\frac{-1}{\sqrt{1-x^2}}$	arcsecx	$\frac{1}{ x \sqrt{x^2-1}}$	
	$\arctan x$	$\frac{1}{1+x^2}$	$\operatorname{arccot} x$	$\frac{-1}{1+x^2}$	
	$\sinh x$	$\cosh x$	$\cosh x$	$\sinh x$	

Derivatives Crib Sheet

For constant $a \in \mathbb{R}$ and arbitrary real functions f and g

Geometry Crib Sheet

Pythag	gorean Identity a^2	$c^2 + b^2 = c^2$
Circle: radius r	$A = \pi r^2$	$c = 2\pi r$
Box: dimensions x, y, z	V = xyz	A = 2(yz + xz + xy)
Sphere: radius r	$V = \frac{4}{3}\pi r^3$	$A = 4\pi r^2$
Right pyramid: height $h \dim x, y$	$V = \frac{1}{3}hxy$	$A = xy + x\sqrt{(y/2)^2 + h^2} + y\sqrt{(x/2)^2 + h^2}$
Cylinder: height h radius r	$V = \pi h r^2$	$A = 2\pi r(h+r)$
Right Cone: height h radius r	$V = \frac{\pi}{3}hr^2$	$A = \pi r \left(r + \sqrt{r^2 + h^2} \right)$
Torus: radii $R > r$	$V = 2\pi^2 r^2 R$	$A = 4\pi^2 r R$
Tetrahedron: edge x	$V = \frac{1}{6\sqrt{2}}x^3$	$A = \sqrt{3}x^2$
Octahedron: edge x	$V = \frac{\sqrt{2}}{3}x^3$	$A = 2\sqrt{3}x^2$
Dodecahedron: edge x	$V = \frac{15 + 7\sqrt{5}}{4}x^3$	$A = 3\sqrt{20 + 10\sqrt{5}x^2}$
Icosahedron: edge x	$V = \frac{5(3+\sqrt{5})}{12}x^3$	$A = 5\sqrt{3}x^2$

.

1. (a) (3 points) What is the limit definition of the derivative of a function?

(b) (6 points) Find dimensions of a rectangle with maximum area if one vertex is at the origin (0,0) and the opposite vertex on the curve $y = \frac{1}{1+x^2}$

The maximum area rectangle has width _____ and height _____

2. (a) (3 points) Compute

 $\int x^{-2/5} dx$

(b) (6 points) Let $g(x) = 2x^2 \log |x| - x^2$. Find the inflections points of f. Where is f concave up? Where is f concave down?

The inflection point(s) of g is (are) _____

g is concave up on _____

g is concave down on _____

3. (a) (3 points) Compute

$$\lim_{x \to \infty} \sqrt{\frac{25x^2}{7+4x^2}}$$

(b) (6 points) The function f is defined on positive numbers by $f(x) = x^3 - 3x + \frac{3}{x}$. The unique minimum of f can be approximated by Newton's Method. Give the iterating formula. Starting with initial guess $x_0 = 1$ find the first two iterations of the method. (You do not need to simplify the second iteration.)

The iterating formula is $x_{n+1} =$ _____.

 $x_1 =$ _____.

 $x_2 =$ _____.

4. (a) (3 points) Compute

$$\lim_{x \to \frac{1}{2}^+} \frac{d}{dx} \left| \frac{1}{x} - 2 \right|$$

(b) (6 points) A silo is to be built with a vertical cylindrical tube with no bottom but topped by a hemispherical dome. The silo must have a volume of 108π meters³. The material for the hemispherical dome costs $\frac{8}{3}$ times the cost of the cylindrical tube material. Find the dimesions of the silo that minimize the cost.

The minimal cost silo has radius ______ and height ______.

5. (a) (3 points) Suppose that f is a function with second derivative

$$f''(x) = (x-1)^4 (x-2)^3 (x-3)^2 (x-4)$$

What are the inflection points of x?

(b) (6 points) Newton's Method can be used to approximate $\sqrt{15}$. Give the iterating formula for x_{n+1} in terms of x_n . Choose a reasonable initial guess x_0 and find the first iteration of the method using your guess.

The iterating formula is $x_{n+1} =$ _____.

Initial guess $x_0 =$ _____.

 $x_1 =$ _____.

6. (a) (3 points) Find an antiderivative of

$$f(t) = \frac{-10}{(5t)^2 + 1}.$$

(b) (6 points) A spherical balloon is inflating at a rate of $3m^3/min$. How fast is the surface area increasing when the volume is $4\pi m^3$?

The surface area is increasing at the rate _____.

7. (a) (3 points) Find all antiderivatives of

 $f(x) = 4 \sec 3x \tan 3x$

(b) (6 points) The table contains values of the function f and its derivative f' evaluated at different values of x.

x	f(x)	f'(x)
0	1	3
1	2	4
2	5	6

If f^{-1} is the inverse function and $g(x) = f^{-1}(f^{-1}(x))$, then what is g'(5), the derivative of g evaluated at x = 5?

$$g'(5) =$$
_____.

- 8. (a) (3 points) Which of the following statement's about the limitations of Newton's Method are true? (Circle ALL that apply.)
 - A. The method might not converge to any number.
 - B. The method might converge to a number which is not a zero of the function.
 - C. The method might converge to a zero of the function which is far away from the initial guess.

(b) (6 points) Find the equation of the line tangent to the graph $y = \sin^2 x$ at the point $\left(\frac{2\pi}{3}, \frac{3}{4}\right)$.

- 9. BONUS (9 points): Multiple Choice
 - (a) The function f(x) is continuous on [a, b]. Circle all of the following statements that must be true:
 - A. f(x) is differentiable on (a, b).
 - B. There is a point c on [a, b] where $f(c) = \frac{f(a) + f(b)}{2}$.
 - C. There is a point c on [a, b] such that $f(c) \ge f(x)$ for all x on [a, b].
 - D. There is a point c on (a, b) where $f'(c) = \frac{f(b) f(a)}{b-a}$.
 - (b) The derivative of $\sin^{-1} (\cos [\ln (x^2)])$ is:

A.
$$\frac{2\sin(\ln [x^2])}{\sqrt{1 - \cos^2[\ln (x^2)]}}$$

B.
$$\frac{2\sin(2\ln |x|)}{(1 + \cos^2[\ln (x^2)])}$$

C.
$$\frac{-2\sin(2\ln |x|)}{x(1 + \cos^2[\ln (x^2)])}$$

D.
$$\frac{-2\sin(2\ln |x|)}{x\sqrt{1 - \cos^2[\ln (x^2)]}}$$

E. None of the above

- (c) Consider the function $f(x) = \frac{(x-1)(x^2-4x+3)}{x-3}$ on the interval [0,3]. Which of the following statements is true regarding the global/absolute minimum and maximum of f on this interval:
 - A. f has a global/absolute minimum at x = 1/2 and a global/absolute maximum at x = 0
 - B. f has a global/absolute minimum at x = 1 and no global/absolute maximum
 - C. f has a global/absolute minimum at x = 1 and a global/absolute maximum at x = 3
 - D. f has a global/absolute minimum at x = 0 and a global/absolute maximum at x = 1
 - E. None of the above.

- (d) Which of the following best describes the behavior of $f(x) = x^2 + 3 \sqrt{x^4 5}$ as $x \to \infty$:
 - A. f has a horizontal asymptote at y = 0
 - B. f has a horizontal asymptote at y = 3
 - C. $f \to \infty$ along the oblique asymptote y = 2x
 - D. $f \to \infty$
 - E. None of the above.

- (e) Suppose f(x), which is continuous for all x, has a global/absolute minimum at x = 3, and f(3) < 0. Further suppose that f has no maxima of any kind, and that $\lim_{x \to \infty} f(x) = \infty$ and $\lim_{x \to -\infty} f(x) = 0$. Circle all of the following statements that must be true regarding roots of f:
 - A. f has exactly one root
 - B. f has at least one root at a location c > 3
 - C. f has at least one root at a location c < 3
 - D. f has exactly one root on the interval $(-\infty, 3)$
 - E. None of the above.