Name: _____

This exam contains 7 pages (including this cover page) and 5 questions. There are 33 points in total. Write explanations clearly and in complete thoughts. No calculators or notes may be used. Put your name on every page.

<u> </u>				
Question	Points	Score		
1	6			
2	6			
3	6			
4	9			
5	6			
Total:	33			

Formal Symbols Crib Sheet

$f: A \to B$	function with domain $A \&$ codomain B	\mathbb{N}	natural numbers
$f \circ g$	composition of functions	\mathbb{Z}	integers
f^{-1}	inverse function	\mathbb{Q}	rational numbers
$\lim_{x \to a}$	limit as x approaches a	\mathbb{R}	real numbers
$\lim_{x \to a^-}$	limit from below	(a,b)	open interval a to b
$\lim_{x \to a^+}$	limit from above	[a,b]	closed interval a to b
\subset	subset of	\in	element of
\cap	intersection	U	union
\mapsto	maps to	f'	derivative
$\frac{d}{dx}$	derivative with respect to x		

For constant $a \in \mathbb{R}$ and arbitrary real functions f and g

Function	Derivative	Function	Derivative
a	0	af	af'
f + g	f' + g'	fg	f'g + fg'
$\frac{f}{g}$	$\frac{f'g-fg'}{g^2}$	$f \circ g$	$(f' \circ g)g'$
f^{-1}	$\frac{1}{f' \circ f^{-1}}$	x^a	ax^{a-1}
a^x	$a^x \ln a$	$\log_a x $	$\frac{1}{x \ln a}$
$\sin x$	$\cos x$	$\csc x$	$-\csc x \cot x$
$\cos x$	$-\sin x$	$\sec x$	$\sec x \tan x$
$\tan x$	$\sec^2 x$	$\cot x$	$-\csc^2 x$
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$	arccscx	$\frac{-1}{ x \sqrt{x^2-1}}$
$\arccos x$	$\frac{-1}{\sqrt{1-x^2}}$	arcsecx	$\frac{1}{ x \sqrt{x^2-1}}$
$\arctan x$	$\frac{1}{1+x^2}$	$\operatorname{arccot} x$	$\frac{-1}{1+x^2}$
$\sinh x$	$\cosh x$	$\cosh x$	$\sinh x$

Geometry Crib Sheet

Pythagorean Identity $a^2 + b^2 = c^2$					
Circle: radius r	$A = \pi r^2$	$c = 2\pi r$			
Box: dimensions x, y, z	V = xyz	A = 2(yz + xz + xy)			
Sphere: radius r	$V = \frac{4}{3}\pi r^3$	$A = 4\pi r^2$			
Right pyramid: height $h \dim x, y$	$V = \frac{1}{3}hxy$	$A = xy + x\sqrt{(y/2)^2 + h^2} + y\sqrt{(x/2)^2 + h^2}$			
Cylinder: height h radius r	$V = \pi h r^2$	$A = 2\pi r(h+r)$			
Right Cone: height h radius r	$V = \frac{\pi}{3}hr^2$	$A = \pi r \left(r + \sqrt{r^2 + h^2} \right)$			
Torus: radii $R > r$	$V = 2\pi^2 r^2 R$	$A = 4\pi^2 r R$			
Tetrahedron: edge x	$V = \frac{1}{6\sqrt{2}}x^3$	$A = \sqrt{3}x^2$			
Octahedron: edge x	$V = \frac{\sqrt{2}}{3}x^3$	$A = 2\sqrt{3}x^2$			
Dodecahedron: edge x	$V = \frac{15 + 7\sqrt{5}}{4}x^3$	$A = 3\sqrt{20 + 10\sqrt{5}x^2}$			
Icosahedron: edge x	$V = \frac{5(3+\sqrt{5})}{12}x^3$	$A = 5\sqrt{3}x^2$			

- 1. (6 points) Suppose that f is a twice differentiable real function defined on the closed interval [0, 10].
 - (a) Suppose that f(5) = 7 and f'(5) = 0 and f''(5) = -2. Does f achieve a maximum at 5?
 - A. Yes, f(5) is the global maximum.
 - B. Yes, f(5) is a local maximum, but cannot be the global maximum.
 - C. Yes, f(5) is a local maximum, but we do not have enough information to know if it is the global maximum.
 - D. No, f(5) cannot be a local maximum.
 - E. We do not have enough information to decide.

Solution: C. The second derivative test guarantees that f(5) is a local maximum, but we have no way of knowing what the function is like at other points.

(b) In addition to the information above, suppose that f(0) = f(1) = f(2) = 3. What is the fewest possible number of critical points that f could have?

Solution: 3. We have that 5 is a critical point and by the mean value theorem there is also a critical point in (0, 1) and in (1, 2).

(c) In addition to the information above, suppose that f'(2) = 21. Give the linearization for f about 2.

Solution: The linearization is L(x) = 3 + 21(x - 3)

2. (6 points) Consider the function $f(x) = x \ln |x|$ on its natural domain. Find any critical points, inflection points, and the intervals on which f is increasing, decreasing, concave up, and concave down.

The critical points are _____.

f is increasing on _____

f is decreasing on _____

The inflection points are _____.

f is concave up on _____

f is concave down on _____

Solution: Compute $f'(x) = \ln |x| + 1$. Then the derivative is 0 at $x = \pm \frac{1}{e}$ and does not exist at x = 0. So the critical points are $-\frac{1}{e}, 0, \frac{1}{e}$. We have that f' is positive, therefore increasing, on $(-\infty, -1/e) \cup (1/3, \infty)$. We have that f' is negative, therefore decreasing, on $(-1/e, 0) \cup (0, 1/e)$. Compute f''(x) = 1/x, which is never valued 0, but does not exist at x = 0. Considering the signs of f'', we see f is concave up on $(0, \infty)$ and concave down on $(-\infty, 0)$ and x = 0 is an inflection point.

3. (6 points) A spherical bubble is made from 4π grams of fluid and inflating at a rate of π cm³/sec. The thickness of the bubble is related to the density of the fluid

$$\rho = \frac{m}{A}$$

where m is the mass of the fluid and A is the surface area. How fast is the density ρ changing when the bubble volume is 8 cm³?

 $\frac{d\rho}{dt} =$ _____

Solution: The volume of a sphere is $V = \frac{4}{3}\pi r^3 = 8 \text{ cm}^3$ and the surface area is $A = 4\pi r^2$. We are given that $\frac{dV}{dt} = 4\pi \text{ cm}^3/\text{sec}$, $V = 8 \text{ cm}^3$, and that mass is constant at 4π grams. Since we are given V and $\frac{dV}{dt}$, solve for ρ in terms of V.

$$\rho = mA^{-1} = \frac{4\pi}{4\pi r^2} \mathbf{g} = r^{-2}\mathbf{g}$$

 \mathbf{SO}

$$\frac{d\rho}{dt} = -2r^{-3}\frac{dr}{dt}g$$

relating $\pi cm^3/sec = \frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}$ we get $\frac{dr}{dt} = \frac{1}{4}r^{-2}$ cm³/sec so by substituting $\frac{dr}{dt}$ and r

$$\frac{d\rho}{dt} = -\frac{1}{2}r^{-5} \text{ g cm}^3/\text{sec} = -\frac{1}{2}\left(\frac{\pi}{6}\right)^{5/3} \text{ g/cm}^2\text{sec}$$

4. (9 points) Let h be a function defined on the domain [0, 5] with the rule

$$h(x) = |x - 1| + 2|x - 3|.$$

Compute the global maximum, minimum, and the arguments at which they occur. Give the intervals where h is increasing and decreasing.

The absolute maximum is ______ which occurs at x =_____.

The absolute minimum is ______ which occurs at x =_____.

h is increasing on _____.

h is decreasing on _____.

Solution: The first term of h(x) has slope ± 1 and the second term ± 2 , so the slope can never add up to 0. Since |x - 1| is not differentiable at 1 and |x - 3| is not differentiable at 3, we have the critical points must be 1 and 3. Then the extrema have to occur at 0, 1, 3, or 5. We compute h(0) = 7, h(1) = 4, h(3) = 2, and h(5) = 8. So the max is 8 occuring at 5 and the min is 2 occuring at 3. Then h is decreasing on $(0, 1) \cup (1, 3)$ and increasing on (3, 5).

5. (6 points) (a) Use the fact that $2^5 = 32$ and a linear approximation to compute a rational number approximating the irrational number $30^{2/5}$.

 $30^{2/5} \approx$ _____

Solution: Linearize the function $f(x) = x^{2/5}$ about 32.

$$30^{2/5} \approx f(32) + f'(32) \cdot (30 - 32) = 32^{2/5} - 2 \cdot \frac{2}{5} \cdot 32^{-3/5} = 4 - \frac{1}{10} = 3.9$$

(b) You estimate the volume of a sphere to be $36\pi \text{cm}^3$ by submerging it in water and measuring the displacement, but the measurement has an uncertainty of $\pm \pi \text{cm}^3$. Compute the radius and find the uncertainty in the radius measurement.

Solution: Using 36π cm³ = $V = \frac{4}{3}\pi r^3$ so r = 3 cm. We have $\Delta V \approx \frac{dV}{dr}\Delta r$ so $\pm \pi = 4\pi r^2 \Delta r$ gives $\Delta r = \frac{1}{36}$ cm.