Math 1551 Learning Goals

Learning goals articulate what students are **expected to be able to do** in a course that can be measured. This course has **course-level** learning goals that pertain to the entire course, and **section-level** learning goals that pertain to sections of the course.

Course-Level Learning Goals

By the end of this course, it is expected that students will be able to do the following.

- A) Construct mathematical expressions and graphs involving functions and their derivatives.
- B) Compute mathematical quantities using differential calculus and interpret their meaning.
- C) Analyze mathematical statements and expressions (for example, to assess whether a particular statement is accurate).
- D) Write logical progressions of precise statements to justify and communicate mathematical reasoning.
- E) Apply calculus concepts to solve real-world problems such as optimization and related rate problems.

For example, students will be expected to construct related rate equations to compute the value of a variable and interpret the resulting value in the context of the given problem.

Section-Level Learning Goals

Section-level learning goals are connected with particular sections of this course.

3.10 Related Rates

1. Solve related rate problems.

3.11 Linearization and Differentials

- 1. Construct differentials, and linearizations centered on a point.
- 2. Use differentials and linearizations to approximate function values, and to characterize how functions are changing near a given point.
- 3. Characterize the error made in a linear approximation.

Note that the textbook also explores sensitivity to change, which we won't have time to cover and students are not expected to know.

4 Applications of Derivatives

4.1 Extreme Values of Functions

- 1. Identify critical points and extreme values of a function.
- 2. Give an example, or sketch a function whose critical points, or local extrema, or global extreme values are given.

4.2 The Mean Value Theorem

- 1. Determine whether Rolle's Theorem and the Mean Value Theorem can be applied to a given function and interval.
- 2. Apply Rolle's theorem and the Mean Value Theorem to characterize the roots, or the rate of change of a function (for example, to identify where the derivative of a function is equal to a particular value).
- 3. Give examples of functions whose derivatives meet certain criteria by using the Mean Value Theorem.

4.3 Monotonic Functions, the First Derivative Test

- 1. Determine where a function is increasing or decreasing.
- 2. Classify critical points using the first derivative test.
- 3. Sketch functions using the first derivative and the first derivative test.

4.4 Concavity and Curve Sketching

- 1. Determine where a function is concave up or concave down.
- 2. Classify critical points using the second derivative test.
- 3. Sketch functions using characteristics such as concavity, intervals of increasing/decreasing, extrema, symmetry, intercepts, asymptotes, domain and range.