Section 4.8 : Antiderivatives

Chapter 4 : Applications of Derivatives

Math 1551, Differential Calculus

"The only real valuable thing is intuition" - Albert Einstein

In this section we will apply the intuition we have developed throughout the course when calculating derivatives, to calculate antiderivatives.

Section 4.8 Antiderivatives

Topics

- 1. Integration
- 2. Integration and differential equations

Learning Objectives

For the topics in this section, students are expected to be able to:

- 1. Construct antiderivatives and indefinite integrals of functions.
- 2. Apply indefinite integrals to solve differential equations and initial value problems.

Motivation

There are many times when we want to obtain an expression for a function when we are given the first or second derivative of a function.

For example:

- Relationships developed in areas of science, social sciences, and engineering give us equations involving f'(x) or f''(x), from which we need to construct f(x).
- Sometimes it is easier to measure f'(x) or f''(x) than it is to measure f(x).

Question: given f'(x), how can we construct an expression for f(x)?

Participation Activity: Worksheet

- Please work by yourself or with one other person
- Each group submits one completed sheet
- Print full names at the top of your sheet
- Every student in a group gets the same grade
- Grading scheme per question:
 - $\circ~$ 0 marks for no work
 - 1 mark for starting the problem or for a final answer with insufficient justification
 - 2 marks for a complete solution
- Print today's date at the top, which is ______

The activity consists of one or two of the examples in this lecture. Your instructor will pass out worksheets.

Example

Identify a function $f(\boldsymbol{x})$ whose derivative is given. Check your answer in each case by differentiation.

- 1. 3x
- 2. $5x^2$
- 3. $5x^2 + 3x$
- 4. $\sin(x)$
- 5. $\sec^2(x)$
- 6. $\cos(2x)$
- 7. e^{2x}
- 8. \sqrt{x}
- 9. $\frac{1}{x}$ for x > 0
- 10. 3^x

The Antiderivative

Definition The function F(x) is an **antiderivative** of f(x) if F'(x) = f(x). The set of all antiderivatives is defined as the **indefinite integral** $\int f(x)dx = F(x) + C$ C is a constant, f(x) is the **integrand**, \int is an **integral sign**, and dx is a differential that indicates the variable over which we are integrating.

Example

Calculate the indefinite integrals.

a)
$$\int (3t^2 + 1) dt$$

b) $\int \left(\frac{1}{\sqrt{x}} + 4x^5\right) dx$

Differential Equations

Definition

A **differential equation** is an equation that involves derivatives. A **solution** to a differential equation is a function that satisfies the differential equation.

Example

Identify a solution to the differential equation y'(x) = 2x.

Initial Value Problems

Definition A differential equation of the form $\frac{dy}{dt} = f(t)$ subject to the condition $y(t_0) = y_0$ is an **initial value problem**.

Example

Solve the initial value problem

$$\frac{dy}{dt} = \frac{4}{\sqrt{t+1}}, \quad y(0) = 0$$

Table of Integrals

function	antiderivative
$x^n, n \neq -1$	$\frac{x^{n+1}}{n+1}$
$\frac{1}{x}$	$\ln x $
e^{kx}	$\frac{1}{k}e^{kx}$
b^x	$\frac{1}{\ln b}b^x$

These integrals will not be given on the final exam. Please memorize them.

Table of Integrals

function	antiderivative
$\sin kx$	$-\frac{1}{k}\cos kx$
$\cos kx$	$\frac{1}{k}\sin kx$
$\sec^2 kx$	$\frac{1}{k} \tan kx$
$\csc^2 kx$	$\frac{1}{k}\cot kx$
$\sec kx \tan kx$	$\frac{1}{k}\sec kx$
$\csc kx \cot kx$	$\frac{1}{k}\csc kx$

These integrals will not be given on the final exam. Please memorize them.

Additional Examples (if time permits)

- 1. True or false. a) $\int x \cos x \, dx = x^2 \sin x + C$ b) $\int \frac{1}{3} (2x+3)^2 \, dx = (2x+3)^3 + C$ c) $\int \sqrt{2x+1} \, dx = \sqrt{x^2+x+C}$
- 2. A sketch of y'(t) is shown on the left. If y(0) = 0, sketch y(t).

