Section 4.7 : Newton's Method

Chapter 4 : Applications of Derivatives

Math 1551, Differential Calculus

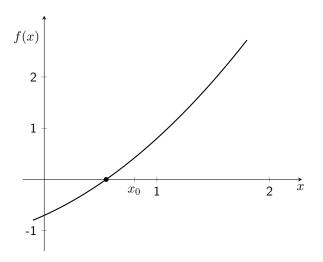
"In mathematics the art of proposing a question must be held of higher value than solving it." – Georg Cantor

In this section we introduce a method for solving a difficult problem. Our algorithm will lead us to more questions than answers.

Section 4.7 Newton's Method

Topics

1. Newton's Method for solving f(x) = 0.


Learning Objectives

For the topics in this section, students are expected to be able to:

1. Given a differentiable function f(x) and an initial estimate x_0 , apply one or two steps of Newton's method to estimate a solution to an equation.

Motivation

Suppose we are given a differentiable function f(x) and an estimate of where f(x) = 0. We want to identify values of x such that f(x) = 0.

Derivation of Newton's Method

Newton's Method

Algorithm Given x_0 and a differentiable function f(x), a solution to f(x) = 0 is estimated with: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad n = 0, 1, 2, \dots$

Participation Activity: Index Card

- Please work by yourself or with one other person
- Each group submits one completed card
- Print full names at the top of your card
- Every student in a group gets the same grade
- Grading scheme per question:
 - $\circ~$ 0 marks for no work
 - 1 mark for starting the problem or for a final answer with insufficient justification
 - 2 marks for a complete solution
- Print today's date at the top, which is ______

The activity consists of one or two of the examples in this lecture. Your instructor will pass out index cards.

Example

Use Newton's Method to estimate a solution to $sin(x) = x^2 - 1$. Start with $x_0 = 0$ and calculate x_1 .

Example

Use Newton's Method to estimate a root of $f(x) = x^3 - 5x + 1$. Start with $x_0 = 1$ and calculate x_1 .

Summary

• Given an x₀, Newton's Method:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad n = 0, 1, 2, \dots$$

- Good questions:
 - Does the method does always converge to a solution?
 - $\circ~$ How do we know when to stop the algorithm?
 - When if there are multiple solutions to f(x) = 0?
 - What happens if $f'(x_n) = 0$?
 - How would we choose x_0 ?
- The learning objective for this section: "Given a differentiable function f(x) and an initial estimate x_0 , apply one or two steps of Newton's method to estimate a solution to an equation."