
Section 4.7 : Newton’s Method

Chapter 4 : Applications of Derivatives

Math 1551, Differential Calculus

“In mathematics the art of proposing a question must be held of higher
value than solving it.” – Georg Cantor

In this section we introduce a method for solving a difficult problem. Our
algorithm will lead us to more questions than answers.
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Section 4.7 Newton’s Method

Topics

1. Newton’s Method for solving f(x) = 0.

Learning Objectives
For the topics in this section, students are expected to be able to:

1. Given a differentiable function f(x) and an initial estimate x0, apply
one or two steps of Newton’s method to estimate a solution to an
equation.
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Motivation

Suppose we are given a differentiable function f(x) and an estimate of
where f(x) = 0. We want to identify values of x such that f(x) = 0.
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Derivation of Newton’s Method
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Newton’s Method

Given x0 and a differentiable function f(x), a solution to
f(x) = 0 is estimated with:

xn+1 = xn − f(xn)

f ′(xn)
, n = 0, 1, 2, . . .

Algorithm
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Participation Activity: Index Card

� Please work by yourself or with one other person

� Each group submits one completed card

� Print full names at the top of your card

� Every student in a group gets the same grade
� Grading scheme per question:

� 0 marks for no work
� 1 mark for starting the problem or for a final answer with insufficient

justification
� 2 marks for a complete solution

� Print today’s date at the top, which is

The activity consists of one or two of the examples in this lecture. Your
instructor will pass out index cards.
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Example

Use Newton’s Method to estimate a solution to sin(x) = x2 − 1. Start
with x0 = 0 and calculate x1.
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Example

Use Newton’s Method to estimate a root of f(x) = x3 − 5x+ 1. Start
with x0 = 1 and calculate x1.
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Summary

� Given an x0, Newton’s Method:

xn+1 = xn − f(xn)

f ′(xn)
, n = 0, 1, 2, . . .

� Good questions:

� Does the method does always converge to a solution?
� How do we know when to stop the algorithm?
� When if there are multiple solutions to f(x) = 0?
� What happens if f ′(xn) = 0?
� How would we choose x0?

� The learning objective for this section: “Given a differentiable
function f(x) and an initial estimate x0, apply one or two steps of
Newton’s method to estimate a solution to an equation.”
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