Section 2.6 : Limits Involving Infinity; Asymptotes of Graphs

Chapter 2 : Limits and Continuity

Math 1551, Differential Calculus

"The only real valuable thing is intuition" - Albert Einstein

As you are solving problems from this section you will develop intuition for identifying asymptotes. But be sure to justify your reasoning when writing out your solutions.

Topics

We will cover these topics in this section.

- 1. Limits at infinity.
- 2. Horizontal, oblique, and vertical asymptotes.

Learning Objectives

For the topics in this section, students are expected to be able to:

- 1. Evaluate infinite limits.
- 2. Identify and sketch horizontal, oblique, and vertical asymptotes of functions.

Students are not expected to apply the formal definition of limit.

Building Intuition

Suppose $f(x) = x^3 - 4x^2 + 2x - 2$ and $g(x) = x^3 - 1$.

What do you think

$$\lim_{x\to\infty}\frac{f(x)}{g(x)}$$

represents? What is it equal to?

Hint: plot these functions in Desmos or some other graphing software.

Example 1

Compute the limit.

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{x^3 - 4x^2 + 2x - 2}{x^3 - 1}$$

Definitions

Note: all the limit laws (from section 2.2) apply to limits at infinity.

Horizontal Asymptotes

Definition: Horizontal Asymptote The line y = b is a **horizontal asymptote** of y = f(x) if either $\lim_{x \to \infty} f(x) = b, \quad \text{or} \quad \lim_{x \to -\infty} f(x) = b$

Example 2: Identify the horizontal asymptotes of

$$\frac{7x^3 + 2}{|x|^3 + x + 1}$$

Oblique Asymptotes

Definition: Oblique Asymptote f(x) has an oblique asymptote if it approaches a line of the form y = mx + bfor $m \neq 0$, as $x \to \infty$, or as $x \to -\infty$.

Note: if f is a rational function, and the degree of its numerator polynomial is 1 greater than the degree of its denominator polynomial, then f has an **oblique asymptote**.

Example

Identify the oblique asymptotes of

$$\frac{x^2+3}{x-2}$$

Vertical Asymptotes

Definition: Vertical Asymptote The line x = a is a vertical asymptote of y = f(x) if either $\lim_{x \to a^+} f(x) = \pm \infty, \quad \text{or} \quad \lim_{x \to a^-} f(x) = \pm \infty$

Example 3: Identify the asymptotes of f(x).

$$f(x) = \frac{2}{x^2 - 2}$$

Sketch the graph of f(x).