Section 1.3 : Trigonometric Functions

Chapter 1 : Functions Math 1551, Differential Calculus

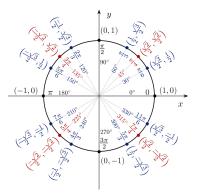


image by wikipedia user Gustab

1.3 Trigonometric Functions

Topics

This section reviews material covered in a pre-requisite course. We will review these topics in this section.

- 1. Arc length, degrees and radians
- 2. Trigonometric functions and identities

Learning Objectives

For the topics in this section, students are expected to be able to:

- 1. Apply arc length formulas.
- 2. Sketch trigonometric functions.
- 3. Apply identities to simplify and evaluate expressions involving trigonometric functions.

Sketch Functions

You need to be able to sketch the standard trigonometric functions.

$\cos x$	$\sin x$	$\tan x$
$\sec x$	$\csc x$	$\cot x$

Example 1: Sketch $y(x) = 1 + \csc(\pi x)$.

Addition and Pythagorean Identities

Addition Formulas

 $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$ $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$

The Pythagorean identity

$$\cos^2 x + \sin^2 x = 1$$

can be used derive

$$1 + \tan^2 x =$$
_____, $\cot^2 x + 1 =$ _____

Double and Half Angle Identities

Double Angle Formulas

$$\cos(2u) = \cos^2 u - \sin^2 u$$
$$\sin(2u) = 2\sin u \cos u$$

Half Angle Formulas

$$\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$$
$$\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$$

Additional Examples (if time permits)

Students should be able to solve the following.

a) solve
$$\sin^2 t = \cos^2 t$$
 for t .

b) express y(t) as a single sine function $y(t) = \frac{1}{\sqrt{2}} \left(\cos(t) - \sin(t) \right)$

c) use a trigonmetric identity to evaluate $\cos^2\left(\frac{\pi}{12}\right)$

Students are encouraged to review these problems and discuss their solutions on Piazza or during office hours.