Name: _____

This exam contains 7 pages (including this cover page) and 6 questions. There are 40 points in total. Write explanations clearly and in complete thoughts. No calculators or notes may be used. Put your name on every page.

Points	Score
6	
8	
8	
8	
5	
5	
40	
	6 8 8 8 5 5 5

Formal Symbols Crib Sheet

i orimar oʻ					
$f: A \to B$	function with domain $A \&$ codomain B	\mathbb{N}	natural numbers		
$f \circ g$	composition of functions	\mathbb{Z}	integers		
f^{-1}	inverse function	\mathbb{Q}	rational numbers		
$\lim_{x \to a}$	limit as x approaches a	\mathbb{R}	real numbers		
$\lim_{x \to a^-}$	limit from below	(a,b)	open interval a to b		
$\lim_{x \to a^+}$	limit from above	[a,b]	closed interval a to b		
C	subset of	\in	element of		
\cap	intersection	U	union		
\mapsto	maps to	f'	derivative		
$\frac{d}{dx}$	derivative with respect to x				

1. (a) (3 points) Compute the differential $dx^3 e^{x^3}$.

(b) (3 points) What is the first order approximation about a point $a \in \mathbb{R}$ to a differentiable function f?

2. (a) (3 points) Let $f(x) = x^3 + e^{-x^2}$. Find the derivative of the inverse function $f^{-1}(x)$ at the point $x = 125 + e^{-25}$.

(b) (5 points) Recall that the hyperbolic sine and cosine are the functions $\sinh t = \frac{e^t - e^{-t}}{2}$ and $\cosh t = \frac{e^t + e^{-t}}{2}$. The inverse function to sinh is the 'area hyperbolic sine' denoted arsinh. Give a formula for the derivative of arsinh in terms of sinh, cosh, and arsinh.

3. (a) (3 points) Find an expression for $\frac{dy}{dx}$ in terms of y and x if

$$e^{x\sin y} = y$$

(b) (5 points) Find an expression for the second derivative $\frac{ds^2}{dt^2}$ in terms of s and t if

$$\arctan\left(\frac{s}{t}\right) = t^2$$

4. (a) (5 points) Use a first order approximation to find a rational approximation for $99^{\frac{1}{4}}$.

(b) (3 points) Estimate the percent error in your approximation.

5. (5 points) A conical tank is 5 meters tall with a radius of 3 meter. Water flows into the tank at a rate of 1 L per minute. How fast is the water level rising when the water level is at 1 meter?

6. (5 points) Suppose a bubble consists of a constant volume of 2 mL of fluid forming a spherical shell around a concentric inner sphere filled with air. I inflate my bubble with an air pump that pumps at a constant rate of 5 cc/sec. I find that bubbles pop between 12 and 14 seconds of inflating. Estimate the thickness and radius of a bubble when it pops and the uncertainty in these quantities.