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A Grayscale Image

A digital 8-bit grayscale image of M × N pixels can be thought of
mathematically as a rectangular array of MN numbers between 0
and 255.

2 / 36



A Grayscale Image: Closer to the Bear Eye
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Image representation as a Matrix



126 87 39 22 13 32
68 9 10 54 61 47
10 31 125 98 3 47
15 70 253 240 4 19
2 2 111 161 31 5

24 4 20 15 1 25
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The Grayscale Colormap

28 = 256
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The RGB Colorcube
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Color Images
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Color Images
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Correcting Images: Noise
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Correcting Images: Noise
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Correcting Images: Noise
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Correcting Images: Noise
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Correcting Images: Contrast
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Correcting Images: Histograms
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Correcting Images: Histogram Equalization
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Edges and the Gradient
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The Fourier Series

Functions have many representations. The Taylor series of f about
point a is

f (x) =
∞∑
n=0

f (n)(a)

n!
(x − a)n

We can also express f as the sum of sine waves. This is called the
Fourier Series of f

f (x) =
∞∑
n=0

ansin(nx) + bncos(nx)

where an and bn are the Fourier coefficients.
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The Fourier Series
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The Fourier Series

g(x) =
2

π
sin(πx)
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The Fourier Series

g(x) =
2

π
sin(πx) − 1

π
sin(2πx)
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The Fourier Series
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The Fourier Series

g(x) =
2

π
sin(πx)− 1

π
sin(2πx)+

2

3π
sin(3πx)− 1

2π
sin(4πx)+

2

5π
sin(5πx)
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The Fourier Transform of an Image

The Fourier coefficients can be obtained from f̂ the Fourier
transform of f which gives the image in frequency space:

f̂ (m, n) =
M−1∑
x=0

N−1∑
y=0

f (x , y)
(

cos 2π(
mx

M
+

ny

N
) − i sin 2π(

mx

M
+

ny

N
)
)

This transformation is reversible:

f (x , y) =
1

MN

M−1∑
m=0

N−1∑
n=0

f̂ (m, n)
(

cos 2π(
mx

M
+

ny

N
) + i sin 2π(

mx

M
+

ny

N
)
)
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The Fourier Transform: Sine Waves
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The Fourier Transform: Spatial Representation of an Image
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The Fourier Transform: Frequency Space
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The Fourier Transform: Spatial Representation of an Image
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The Fourier Transform: Frequency Space
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The Fourier Transform: Spatial Representation of an Image
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The Fourier Transform: Harry Osborn in Frequency Space
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The Fourier Transform: Harry Osborn in Frequency Space
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The Fourier Transform: 90% Compression Harry Osborn
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Correcting Periodic Noise
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Correcting Periodic Noise
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Correcting Periodic Noise

36 / 36


