## Mathematics in Digital Images

#### Shane Scott

Department of Mathematics Kansas State University



December 5, 2011

◆ロト ◆御ト ◆注ト ◆注ト 注 のへで

# A Grayscale Image

A digital 8-bit grayscale image of  $M \times N$  pixels can be thought of mathematically as a rectangular array of *MN* numbers between 0 and 255.



#### A Grayscale Image: Closer to the Bear Eye



<ロト < 回 ト < 巨 ト < 巨 ト 三 の へ ()・ 3 / 36

## Image representation as a Matrix



| Γ | 126 | 87 | 39  | 22  | 13 | 32 - |
|---|-----|----|-----|-----|----|------|
|   | 68  | 9  | 10  | 54  | 61 | 47   |
|   | 10  | 31 | 125 | 98  | 3  | 47   |
|   | 15  | 70 | 253 | 240 | 4  | 19   |
|   | 2   | 2  | 111 | 161 | 31 | 5    |
| L | 24  | 4  | 20  | 15  | 1  | 25   |

<ロ> < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (),

# The Grayscale Colormap

$$2^8 = 256$$



୬ ୯ ୯ 5 / 36

# The RGB Colorcube

















# Correcting Images: Contrast



# Correcting Images: Histograms



୍ ଏ ୯ 14 / 36

# Correcting Images: Histogram Equalization



# Edges and the Gradient



16/36

2

# Functions have many representations. The Taylor series of f about point a is

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

Functions have many representations. The Taylor series of f about point a is

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

We can also express f as the sum of sine waves. This is called the Fourier Series of f

$$f(x) = \sum_{n=0}^{\infty} a_n sin(nx) + b_n cos(nx)$$

where  $a_n$  and  $b_n$  are the Fourier coefficients.

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><17/36



<ロ><日><日><日><日><日><日><日><日><日><日><日><日><日</td>18/36











 $g(x) = \frac{2}{\pi}\sin(\pi x) - \frac{1}{\pi}\sin(2\pi x) + \frac{2}{3\pi}\sin(3\pi x) - \frac{1}{2\pi}\sin(4\pi x) + \frac{2}{5\pi}\sin(5\pi x)$ 

The Fourier coefficients can be obtained from  $\hat{f}$  the Fourier transform of f which gives the image in frequency space:

$$\hat{f}(m,n) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) \left( \cos 2\pi (\frac{mx}{M} + \frac{ny}{N}) - i \sin 2\pi (\frac{mx}{M} + \frac{ny}{N}) \right)$$

イロン イロン イヨン イヨン 三日

The Fourier coefficients can be obtained from  $\hat{f}$  the Fourier transform of f which gives the image in frequency space:

$$\hat{f}(m,n) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) \left( \cos 2\pi (\frac{mx}{M} + \frac{ny}{N}) - i \sin 2\pi (\frac{mx}{M} + \frac{ny}{N}) \right)$$

This transformation is reversible:

$$f(x,y) = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \hat{f}(m,n) \left( \cos 2\pi \left(\frac{mx}{M} + \frac{ny}{N}\right) + i \sin 2\pi \left(\frac{mx}{M} + \frac{ny}{N}\right) \right)$$

<ロト < 回 ト < 巨 ト < 巨 ト 三 の Q () 24 / 36

# The Fourier Transform: Sine Waves





<ロト < 部 > < 言 > < 言 > 言 の < で 25 / 36

# The Fourier Transform: Spatial Representation of an Image



#### The Fourier Transform: Frequency Space

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?

## The Fourier Transform: Spatial Representation of an Image



# The Fourier Transform: Frequency Space



୬ < ୯ 29 / 36

## The Fourier Transform: Spatial Representation of an Image



## The Fourier Transform: Harry Osborn in Frequency Space



# The Fourier Transform: Harry Osborn in Frequency Space



# The Fourier Transform: 90% Compression Harry Osborn



# Correcting Periodic Noise



■ ◆ ■ ▶ ■ のへで 34/36

# Correcting Periodic Noise



■ ◆ ■ ◆ ■ ◆ ○ へ ○ 35 / 36

# Correcting Periodic Noise



