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Hilbert Spaces

Signals

Signals are vectors in the Hilbert space

L2 =

{
v : R→ C

∣∣∣∣ ∫
R
|v(t)|2dt

}

Digital Signals

In practice we typically use digital signals in the Hilbert space

`2ZN = {z : ZN → C}
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Hilbert Spaces

Inner Product

Hilbert spaces are equipped with the inner product 〈·|·〉 : H × H → C.
For L2

〈u|v〉 =
∫
R

u(t)v(t)dt

or for `2ZN

〈u|v〉 =
N−1∑
k=0

uk vk

and are Cauchy complete with respect the the metric/norm

‖u − v‖ = 〈u − v |u − v〉 1
2
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Hilbert Spaces

Bases

If {ak |k ∈ Z} is a complete othonormal basis for a Hilbert space H
then any v ∈ H can be written in the form

v =
∑
k∈Z

〈ak |v〉ak
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Fourier Transform

Fourier Transform

If f ∈ L2 we call its Fourier transform f̂ the function

f̂ (ω) =
1√
2π

∫
R

f (t)e−itωdx

(when it exists).

Theres an inverse

f (t) = (f̂ )∨(t) =
1√
2π

∫
R

f̂ (ω)eitωdω

That is (almost)

f (t) =
∫
R
〈 eitω
√

2π
|f 〉 eitω
√

2π
dω
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Fourier Transform

Fourier Transform

If z ∈ `2ZN we call its Fourier transform ẑ

ẑm =
N−1∑
n=0

zn
e−i2πmn/N
√

N

We have

zn =
N−1∑
m=0

〈e
i2πmn/N
√

N
|z〉e

i2πmn/N
√

N
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The Walken Signal z
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Fourier Compression

An easy low-loss compression

Discard the lowest pth percent of Fourier coefficients, replacing them
by zero.
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ẑ The Walken Spectrum (Fourier Transform)
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ẑ The Walken Spectrum 90% Compressed
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z The Walken Signal 90% Compressed
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z The Walken Signal 95% Compressed
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Problems

Practial Objection

zn =
N−1∑
m=0

ẑm
ei2πmn/N
√

N

f (t) =
∫ ∞
−∞

f̂ (ω)
eitω
√

2π
dω

Delocalization
1 Signal is delocalized in frequency space
2 Spectrum is delocalized in temporal space
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Localization in Streaming
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Wavelets

Wavelets in L2

A wavelet in L2 is ψ ∈ L2 such that

ψj,k (t) = 2j/2ψ(2j t − k)

satisfy {ψj,k | j , k ∈ Z} is a complete, orthonormal basis.
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Mexican Hat Wavelet
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Mexican Hat Fourier Transform
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Wavelets

k th Translation
If z ∈ `2ZN

Rk zn = zn−k

Wavelets in `2ZN

A first stage wavelet pair is a pair of vectos u, v ∈ `2ZN such that

B = {R2k u | k = 0, . . . ,N/2− 1} ∪ {R2k v | k = 0, . . . ,N/2− 1}

is a complete othonormal basis fo `2ZN
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Wavelets

Low Pass and High Pass

A wavelet pair u, v must satisfy

|û(n)|2 + |û(n + N/2)|2 = 2

1 Put û(0) =
√

2 and û(N/2) = 0, u is the low pass filter
2 Put v̂(N/2) =

√
2 and v̂(0) = 0, v is the high pass filter

z expansion

z =

N/2−1∑
n=0

〈R2k u|z〉R2k u +

N/2−1∑
n=0

〈R2k v |z〉R2k v

1 The first term contains an approximation.
2 The second term contains the details.
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1 Put û(0) =
√
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The Walken Signal
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1st Stage Wavelet Representation
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2nd Stage Wavelet Representation
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3rd Stage Wavelet Representation
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4th Stage Wavelet Representation
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4th Stage Wavelet Representation 90% Compression
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Reconstructed 90% Compression

Play
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5th Stage Wavelet Representation 95% Compression
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Reconstructed 95% Compression
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Sound Comparison

Original

.9 Compressed Fourier

.95 Compressed Fourier

.9 Compressed Wavelet

.95 Compressed Wavelet
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Percent Error Comparisons
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