Wavelet-Based Compression of Signals

Shane Scott

Kansas State University

April 12, 2012

Shane Scott Wavelet-Based Compression of Signals

< 3 > < 3</p>

Signals

Signals are vectors in the Hilbert space

$$L_2 = \left\{ \boldsymbol{v} : \mathbb{R} \to \mathbb{C} \mid \int_{\mathbb{R}} |\boldsymbol{v}(t)|^2 dt \right\}$$

Signals

Signals are vectors in the Hilbert space

$$L_2 = \left\{ \boldsymbol{v} : \mathbb{R} \to \mathbb{C} \mid \int_{\mathbb{R}} |\boldsymbol{v}(t)|^2 dt \right\}$$

Digital Signals

In practice we typically use digital signals in the Hilbert space

$$\ell_2\mathbb{Z}_N=\{z:\mathbb{Z}_N\to\mathbb{C}\}$$

.∋ → < 3

Inner Product

Hilbert spaces are equipped with the inner product $\langle \cdot | \cdot \rangle : H \times H \to \mathbb{C}$. For L_2

$$\langle u | v
angle = \int_{\mathbb{R}} \overline{u(t)} v(t) dt$$

Inner Product

Hilbert spaces are equipped with the inner product $\langle\cdot|\cdot\rangle:H\times H\to\mathbb{C}.$ For L_2

$$\langle u|v
angle = \int_{\mathbb{R}}\overline{u(t)}v(t)dt$$

or for $\ell_2 \mathbb{Z}_N$

$$\langle u | v \rangle = \sum_{k=0}^{N-1} \overline{u_k} v_k$$

Inner Product

Hilbert spaces are equipped with the inner product $\langle\cdot|\cdot\rangle:H\times H\to\mathbb{C}.$ For L_2

$$\langle u|v
angle = \int_{\mathbb{R}}\overline{u(t)}v(t)dt$$

or for $\ell_2 \mathbb{Z}_N$

$$\langle u|v\rangle = \sum_{k=0}^{N-1} \overline{u_k} v_k$$

and are Cauchy complete with respect the the metric/norm

$$\|\boldsymbol{u}-\boldsymbol{v}\| = \langle \boldsymbol{u}-\boldsymbol{v}|\boldsymbol{u}-\boldsymbol{v}\rangle^{\frac{1}{2}}$$

Bases

If $\{a_k | k \in \mathbb{Z}\}$ is a complete othonormal basis for a Hilbert space H then any $v \in H$ can be written in the form

$$m{v} = \sum_{k \in \mathbb{Z}} \langle a_k | m{v}
angle a_k$$

∃ >

If $f \in L_2$ we call its Fourier transform \hat{f} the function

$$\hat{f}(\omega) = rac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}f(t)e^{-it\omega}dx$$

(when it exists).

If $f \in L_2$ we call its Fourier transform \hat{f} the function

$$\hat{f}(\omega) = rac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}f(t)e^{-it\omega}dx$$

(when it exists). Theres an inverse

$$f(t) = (\hat{f})^{\vee}(t) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \hat{f}(\omega) e^{it\omega} d\omega$$

If $f \in L_2$ we call its Fourier transform \hat{f} the function

$$\hat{f}(\omega) = rac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}f(t)e^{-it\omega}dx$$

(when it exists). Theres an inverse

$$f(t) = (\hat{f})^{\vee}(t) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \hat{f}(\omega) e^{it\omega} d\omega$$

That is (almost)

$$f(t) = \int_{\mathbb{R}} \langle rac{oldsymbol{e}^{it\omega}}{\sqrt{2\pi}} | f
angle rac{oldsymbol{e}^{it\omega}}{\sqrt{2\pi}} oldsymbol{d} \omega$$

If $z \in \ell_2 \mathbb{Z}_N$ we call its Fourier transform \hat{z}

$$\hat{z}_m = \sum_{n=0}^{N-1} z_n \frac{e^{-i2\pi mn/N}}{\sqrt{N}}$$

→ Ξ →

If $z \in \ell_2 \mathbb{Z}_N$ we call its Fourier transform \hat{z}

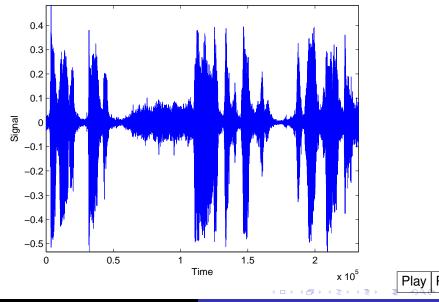
$$\hat{z}_m = \sum_{n=0}^{N-1} z_n \frac{e^{-i2\pi mn/N}}{\sqrt{N}}$$

We have

$$z_n = \sum_{m=0}^{N-1} \langle \frac{e^{i2\pi mn/N}}{\sqrt{N}} | z \rangle \frac{e^{i2\pi mn/N}}{\sqrt{N}}$$

→ Ξ →

The Walken Signal z

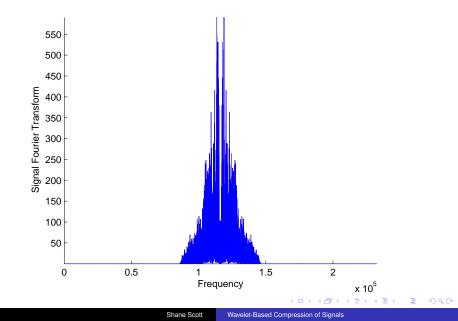


Shane Scott Wavelet-Based Compression of Signals

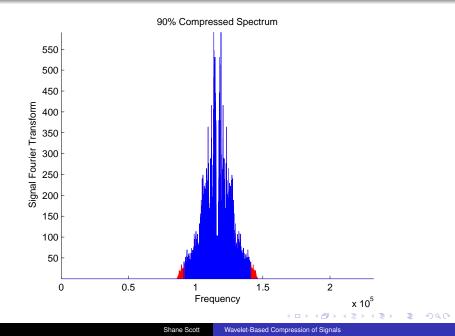
An easy low-loss compression

Discard the lowest p^{th} percent of Fourier coefficients, replacing them by zero.

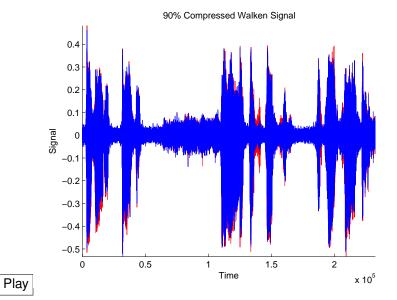
ż The Walken Spectrum (Fourier Transform)



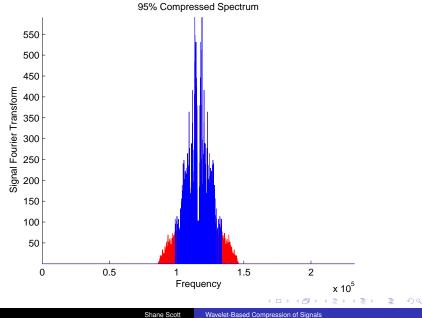
2 The Walken Spectrum 90% Compressed



z The Walken Signal 90% Compressed

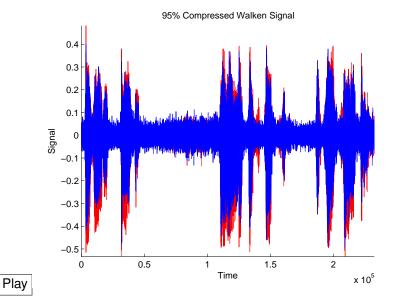


2 The Walken Spectrum 95% Compressed



Wavelet-Based Compression of Signals

z The Walken Signal 95% Compressed



Practial Objection

$$z_n = \sum_{m=0}^{N-1} \hat{z}_m \frac{e^{i2\pi mn/N}}{\sqrt{N}}$$
$$f(t) = \int_{-\infty}^{\infty} \hat{f}(\omega) \frac{e^{it\omega}}{\sqrt{2\pi}} d\omega$$

Delocalization

- Signal is delocalized in *frequency* space
- Spectrum is delocalized in temporal space

Localization in Streaming

Problems

Practial Objection

$$z_n = \sum_{m=0}^{N-1} \hat{z}_m \frac{e^{i2\pi mn/N}}{\sqrt{N}}$$
$$f(t) = \int_{-\infty}^{\infty} \hat{f}(\omega) \frac{e^{it\omega}}{\sqrt{2\pi}} d\omega$$

Delocalization

- Signal is delocalized in *frequency* space
- Spectrum is delocalized in temporal space

Problems

Practial Objection

$$z_n = \sum_{m=0}^{N-1} \hat{z}_m \frac{e^{i2\pi mn/N}}{\sqrt{N}}$$
$$f(t) = \int_{-\infty}^{\infty} \hat{f}(\omega) \frac{e^{it\omega}}{\sqrt{2\pi}} d\omega$$

Delocalization

- Signal is delocalized in *frequency* space
- Spectrum is delocalized in temporal space

Impractical Objection

$$\frac{e^{it\omega}}{\sqrt{2\pi}}\notin L_2$$

This isn't a basis for L_2 .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Wavelets in L₂

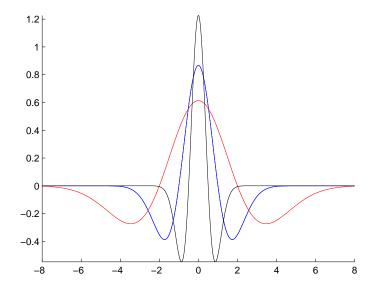
A wavelet in L_2 is $\psi \in L_2$ such that

$$\psi_{j,k}(t) = 2^{j/2}\psi(2^jt - k)$$

satisfy $\{\psi_{j,k} \mid j, k \in \mathbb{Z}\}$ is a complete, orthonormal basis.

< □ > < 同 > < 回 > < 回 > .

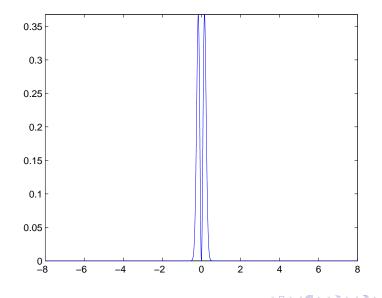
Mexican Hat Wavelet

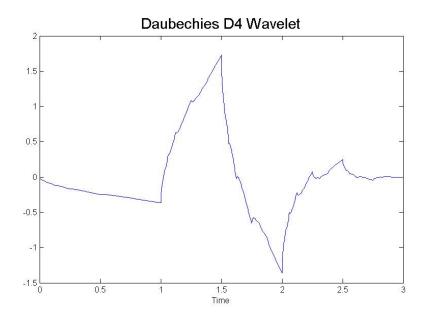


э.

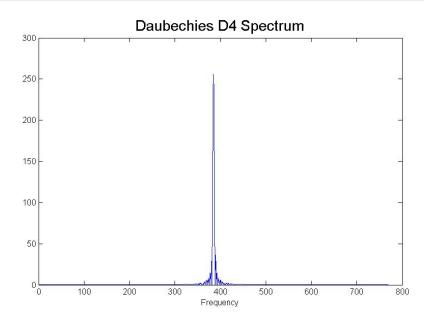
-

Mexican Hat Fourier Transform

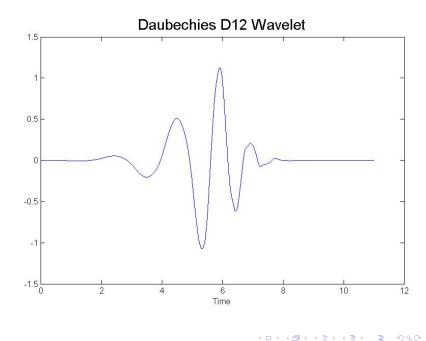


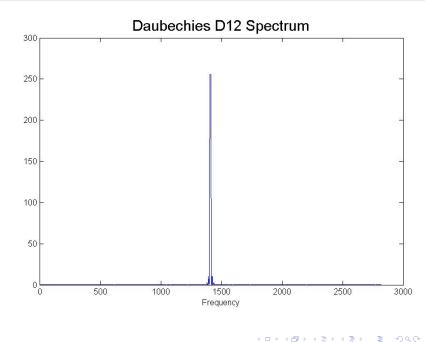


イロト イヨト イヨト イヨト



イロン イロン イヨン イヨン





*k*th Translation

If $z \in \ell_2 \mathbb{Z}_N$

$$R_k z_n = z_{n-k}$$

Wavelets in $\ell_2 \mathbb{Z}_N$

A first stage wavelet pair is a pair of vectos $u, v \in \ell_2 \mathbb{Z}_N$ such that

$$B = \{R_{2k}u \mid k = 0, \dots, N/2 - 1\} \cup \{R_{2k}v \mid k = 0, \dots, N/2 - 1\}$$

is a complete othonormal basis fo $\ell_2 \mathbb{Z}_N$

A wavelet pair *u*, *v* must satisfy

$$|\hat{u}(n)|^2 + |\hat{u}(n+N/2)|^2 = 2$$

A B < A B </p>

크

A wavelet pair *u*, *v* must satisfy

$$|\hat{u}(n)|^2 + |\hat{u}(n+N/2)|^2 = 2$$

• Put $\hat{u}(0) = \sqrt{2}$ and $\hat{u}(N/2) = 0$, *u* is the *low pass filter*

A B A A B A

A wavelet pair *u*, *v* must satisfy

$$|\hat{u}(n)|^2 + |\hat{u}(n+N/2)|^2 = 2$$

Put û(0) = √2 and û(N/2) = 0, *u* is the *low pass filter* Put î(N/2) = √2 and î(0) = 0, *v* is the *high pass filter*

z expansion

$$z = \sum_{n=0}^{N/2-1} \langle R_{2k} u | z \rangle R_{2k} u + \sum_{n=0}^{N/2-1} \langle R_{2k} v | z \rangle R_{2k} v$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

크

A wavelet pair *u*, *v* must satisfy

$$|\hat{u}(n)|^2 + |\hat{u}(n+N/2)|^2 = 2$$

Put û(0) = √2 and û(N/2) = 0, *u* is the *low pass filter* Put î(N/2) = √2 and î(0) = 0, *v* is the *high pass filter*

z expansion

$$z = \sum_{n=0}^{N/2-1} \langle R_{2k} u | z \rangle R_{2k} u + \sum_{n=0}^{N/2-1} \langle R_{2k} v | z \rangle R_{2k} v$$

The first term contains an approximation.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A wavelet pair *u*, *v* must satisfy

$$|\hat{u}(n)|^2 + |\hat{u}(n+N/2)|^2 = 2$$

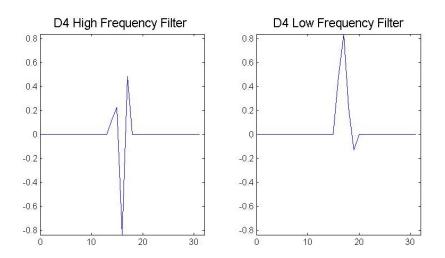
Put û(0) = √2 and û(N/2) = 0, *u* is the *low pass filter* Put î(N/2) = √2 and î(0) = 0, *v* is the *high pass filter*

z expansion

$$z = \sum_{n=0}^{N/2-1} \langle R_{2k} u | z \rangle R_{2k} u + \sum_{n=0}^{N/2-1} \langle R_{2k} v | z \rangle R_{2k} v$$

- 1
 - The first term contains an approximation.
 - The second term contains the details.

・ロン ・四 ・ ・ ヨン ・ ヨン



イロン イロン イヨン イヨン

2

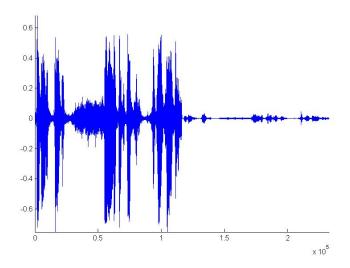
The Walken Signal



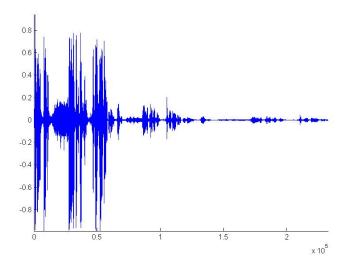
2

* 王

1st Stage Wavelet Representation



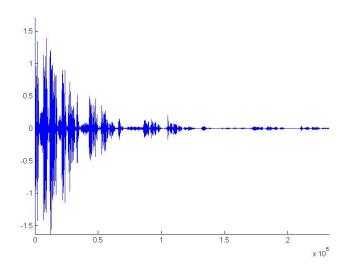
2nd Stage Wavelet Representation



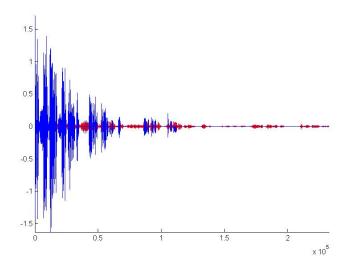
3rd Stage Wavelet Representation



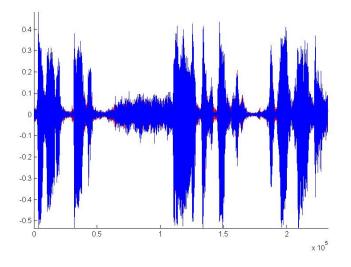
4th Stage Wavelet Representation



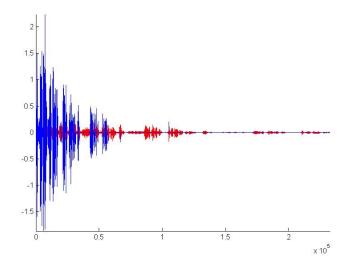
4th Stage Wavelet Representation 90% Compression



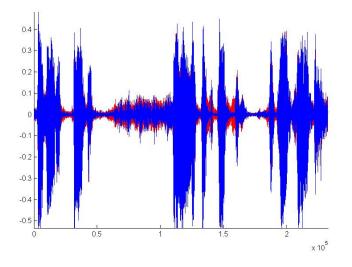
Reconstructed 90% Compression



5th Stage Wavelet Representation 95% Compression



Reconstructed 95% Compression



Original

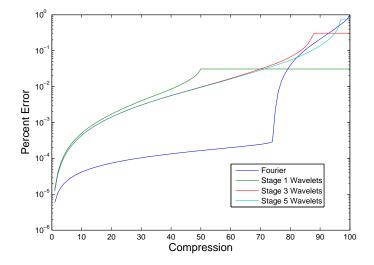
.9 Compressed Fourier

.95 Compressed Fourier

.9 Compressed Wavelet

.95 Compressed Wavelet

Percent Error Comparisons



Thank You

This presentation is based on work with Brian Moore, Vincent Pigno, and Virginia Naibo and supported by the Kansas State University i-Center for the Integration of Undergraduate, Graduate, and Postdoctoral Research.

